Comprehensive Exam – Linear Algebra Spring 2005

1. Determine whether each of the following statements is TRUE or FALSE by giving either a proof or a counter-example. Assume below that the sets are finite and vector spaces are finite dimensional.

- (i) If $S = \{v_1, v_2, \dots, v_m\}$ is a linearly independent subset of a vector space V and $W = \{w_1, w_2, \dots, w_l\}$ is a generating set for V, then $l \ge m$.
- (ii) The union of any two subspaces of a vector space V is also a subspace of V.
- (iii) The solutions of the differential equation $y' = y^2$ (prime denotes derivative) form a subspace of the vector space of real-valued functions defined over the field of real numbers R.

2. (a) Construct an orthogonal (with respect to the standard inner product) basis for \mathbb{R}^3 containing the vectors (1,1,2) and (2,0,-1). Justify your answer.

(b) Given the subset $S = \{e^x, e^{2x}\}$ of the vector space of real-valued functions defined on the real line R. Prove that S is linearly independent.

(c) Let $S = \{u_1, u_2, \ldots, u_k\}$ be a linearly independent subset of a vector space V over the field $Z_2 = \{0, 1\}$ of characteristic 2. How many vectors are in span(S)? Justify your answer.

3. Let T be the matrix transpose operator over the vector space $M_{n \times n}(R)$ of real, $n \times n$ matrices defined by $T(A) := A^t$, $A \in M_{n \times n}(R)$. DO NOT use a matrix representation of T for this problem.

- (i) Prove that T is a linear transformation. Show that $T^2 = I$, the identity operator on $M_{n \times n}(R)$.
- (ii) Determine all the eigenvalues of T and describe the corresponding eigenspaces.

4. Let T be a linear transformation over a *n*-dimensional vector space V.

- (i) Prove that T is invertible if and only if 0 is *not* an eigenvalue of T.
- (ii) Suppose T is invertible, then show that T^{-1} is a polynomial in T of degree n-1.

5. (a) Suppose $\langle x, y \rangle := y^* Hx$ defines an inner product on the complex vector space \mathbb{C}^n , where $x, y \in \mathbb{C}^n$, H is a complex, $n \times n$ matrix and y^* is the matrix adjoint of y. Show that H must be a Hermitian matrix with positive diagonal entries.

(b) Let I be the identity matrix. Prove that I + iH is invertible for any Hermitian matrix H.

(c) Let $\lambda \in C$ be an eigenvalue of a unitary matrix U. Show that $|\lambda| = 1$.

6. Consider the vector space V spanned by the basis set $\beta = \{e^x, xe^x, e^{-x}, xe^{-x}\}$ of real valued functions over R. Let T be a linear transformation on V defined by $T(f) = f'(x), f \in V$.

(a) Find a Jordan canonical form J and a Jordan canonical basis γ for T.

(b) Let $A = [T]_{\beta}$ be the matrix representation of T in the β -basis. Use the Jordan form J to obtain an explicit formula for A^n for any positive integer n.