Master of Science Exam in Applied Mathematics Analysis – June 3, 2006

There are 9 problems here. The best 6 will be used for the grade.

1. Let $C([0,1],\mathbb{R})$ be the metric space of continuous functions $f:[0,1]\to\mathbb{R}$ with the metric

$$d(f,g) = \max_{0 \le x \le 1} |f(x) - g(x)|.$$

Define:

$$A = \{ f \in C([0,1], \mathbb{R}) : f(x) \ge 0 \text{ for all } x \in [0,1] \}.$$

Prove that

- (a) A is a closed set in $C([0,1],\mathbb{R})$.
- (b) A is not an open set in $C([0,1],\mathbb{R})$.
- 2. Let

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + n^2 x^2}.$$

- (a) Show that the series converges for all x > 0.
- (b) Show that the series converges uniformly on $[a, \infty)$ for any a > 0.
- (c) Show that the series fails to converge uniformly on (0, 1]. (Hint: Consider the uniform Cauchy criterion.)
- (d) Is f(x) bounded on (0,1]? Justify your assertion.
- 3. (a) Prove that the series

$$\sum_{n=0}^{\infty} \frac{x}{(1+x)^n}$$

is uniformly convergent for $x \in [1, 2]$

- (b) Sum the series in part (a) explicitly. For what values of x is your summation valid?
- (c) Compute:

$$\sum_{n=0}^{\infty} \int_{1}^{2} \frac{x}{(1+x)^n} dx.$$

Justify your steps.

4. Let $K \subseteq \mathbb{R}^2$. Fix $\mathbf{u} \in \mathbb{R}^2 \setminus K$ (that is $\mathbf{u} \notin K$) and define

$$\delta(\mathbf{u}) := \inf_{\mathbf{v} \in K} \{d(\mathbf{u}, \mathbf{v})\},\$$

where $d(\mathbf{u}, \mathbf{v})$ denotes the Euclidean metric between the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$.

- (a) Prove that there exists a sequence $\{v_k\}$ in K such that $\delta_k := d(u, v_k)$ converges to $\delta(u)$.
- (b) Prove that if K is closed then $\delta(\mathbf{u}) > 0$. (Hint: Suppose not.)
- (c) Prove that if K is compact then $\delta(\mathbf{u}) = d(\mathbf{u}, \mathbf{w})$ for some $\mathbf{w} \in K$.

5. Let $f_n: \mathbb{R} \to \mathbb{R}$ be defined by

$$f_n(x) = \frac{x}{1 + nx^2}.$$

- (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in (-\infty, \infty)$.
- (b) Show that in fact $\{f_n : \mathbb{R} \to \mathbb{R}\}$ converges uniformly to the limit $f : \mathbb{R} \to \mathbb{R}$ in part (a).
- (c) Show that $\lim_{n\to\infty} f'_n(0)$ exists but is not equal to f'(0) for the limit f(x) of part (a).
- (d) Does $\{f'_n : \mathbb{R} \to \mathbb{R}\}$ converge uniformly? Explain why or why not.
- 6. (a) Prove that $e^x \ge 1 + x$ for all $x \ge 0$.
- (b) Let $a_1 = 1$ and

$$a_{n+1} = (1 + \frac{1}{n^2})a_n, \quad n = 1, 2, 3, \dots$$

Prove by induction and part (a) that

$$a_{n+1} \le e^{\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}}$$
, for all $n = 1, 2, 3, \dots$

- (c) Conclude that $\lim_{n\to\infty} a_n$ exists. State your reasoning.
- 7. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \sin(x/2) + \cos(y/2).$$

- (a) Find the gradient $\nabla f(\pi,0)$ and the Hessian matrix $\nabla^2 f(\pi,0)$.
- (b) Prove that

$$\lim_{(x,y)\to(\pi,0)} \frac{f(x,y)-2}{\sqrt{(x-\pi)^2+y^2}} = 0.$$

8. Let $f:[0,1]\to\mathbb{R}$ be continuous and non-negative with f(0)=1, and f(1)=0. Define

$$A = \{x \in [0,1] : f(x) = 0\}.$$

- (a) Prove that A is closed. Conclude that A is compact.
- (b) Define $x_0 = \inf A$. Prove that $f(x_0) = 0$, and so conclude that $x_0 > 0$.
- 9. Let O and V be open subsets of \mathbb{R}^2 and assume that $\mathbf{F}:O\to V$ is one to one and onto and continuously differentiable. Suppose that (x,y) is a point in O at which $\det \mathbf{DF}(x,y)=0$. Show that the inverse $\mathbf{F}^{-1}:V\to O$ can not be continuously differentiable at the point $(u,v)=\mathbf{F}(x,y)$. (Hint: Argue by contradiction and thus justify an application of the chain rule to the identity $\mathbf{F}^{-1}(\mathbf{F}(x,y))=(x,y)$.)