
QUICK INTRODUCTION TO MATLAB
PART I

Department of Mathematics

University of Colorado at Colorado Springs

General Remarks
This worksheet is designed for use with MATLAB version 6.5 or later. Once you have
MATLAB running on your machine, you get MATLAB to do things for you by typing
commands at the prompt sign ">>".

There are various forms of help available. Typing
helpwin, helpdesk, or demo opens an interactive help window

help <function_name> lists the description of <function_name> in the command

window

diary on, diary off - record all activities on the command window into a file named

"diary" (e.g. for assignments)
diary <filename> - save your session in a file named "<filename>". If the file already

exists, the new listing is appended.

Matrices

The basic object in MATLAB is a matrix (hence the name, MATtrix LABoratory). The entries
of a matrix are complex numbers.
There is no limitation on the size of the matrix (number of rows and number of columns).
Scalars are treated as 1x1 matrices.

To type a matrix into MATLAB

use square brackets "[" and "]"
separate elements in a row with commas "," or spaces " "
use a semicolon ";" to separate rows.

For example, type

[1 2 3;4 5 6;7 8 9]

ans =

 1 2 3

 4 5 6

 7 8 9

[2+3*i; pi; exp(1)]

ans =

 2.0000 + 3.0000i

 3.1416
 2.7183

All computations are performed in double precision. The format commands switch

between different output formats:
format short; pi % 4 decimal digits

ans =

 3.1416

format long; pi % 14 decimal digits
format short e; pi % 4 decimals in exponential nonation

format long e; pi % 14 decimals in exponential notation

ans =

 3.14159265358979

ans =

 3.1416e+000

ans =

 3.141592653589793e+000

Alternatively, you can tell num2str how many digits to display

num2str(pi, 3)

ans =

 3.14

MATLAB has several ways to generate simple matrices (need to specify the size)

 zeros - matrix with all elements equal to zero
 ones - matrix with all elements equal to one
 eye – identity matrix
 rand – matrix with uniformly distributed random elements
 randn - matrix with normally distributed random elements

Examples to try:

zeros(2,3), ones(2,2), eye(3)

ans =

 0 0 0

 0 0 0

ans =

 1 1

 1 1

ans =

 1 0 0

 0 1 0

 0 0 1

Variables

Variables in Matlab are named objects that are assigned using the equal sign "=". They

may contain upper and lowercase letters,
any number of "_" characters and numerals, but cannot start with a numeral.

 names and types of variables do not have to be declared apriori.
 names of variables should not overlap with MATLAB keywords, function names

and command names
 Scalar variables can be later extended into vectors and matrices

Examples of valid MATLAB variable assignments:
a = 1
ind = [1 3 5 7]
Output_Type1 = v*Q*v'
name='John Smith'

The following are bad choices for variable names

2for1 = 'yes'
end = 1
sin = 10
i = 2

 clear <variable_name> - delete the value of <variable_name> from the current

working space
 clear all - clear values of all variables

 clc - clear the command window and move the cursor to the top

Common Operators

 Semicolon ";" is used to assign a variable without getting an echo from MATLAB.

 Comma "," separates different commands on the same line, the result is printed

for each command
 Colon ":" generates an ordered set of numbers

 Three periods "…" split a long command into several lines.

 Comment sign "%" makes MATLAB ignore the whole line after the sign, hence is

used for comments.

Try the following:
a = 2

b = 3;
c = a+b;
d = c/2;
c, d
who % Lists all variables defined so far
whos
clear % Clears all previously defined variables
f = 1:5;
who

Arithmetic Operations

 "+", "-", "*", "/" – conventional operators for addition, substraction,

multiplication and division
 "\" – inverse division (3\2 = 2/3 = 0.6666)

 "^" – power operator

Type the following
r = 10;

vol = 4*pi ...
 *r^3/3;

r,vol

r =

 10

vol =

 4.1888e+003

 ".*", "./" – multiplication and division between the elements of two matrices of

the same dimension
 ".^" – power operation for each element of the matrix

Try the following commands
A = [1 2;3 4], B=2*ones(2)

A.^2, A.*B %Note that these are not the same as A^2 and A*B

A =

 1 2

 3 4

B =

 2 2

 2 2

ans =

 1 4

 9 16

ans =

 2 4

 6 8

Vectors

A vector is a one-dimensional array, which is a matrix consisting of one column (column
vectors) or of one row (row-vectors).
MATLAB code is designed to handle matrices (in particular vectors) in an optimal way, and
it contains an extensive list of operations
with vectors/matrices. Let's start learing the most elementary ones.

 Consider the row vector x and the column vector y as follows

x = [0, 0.5, 1, 1.5, 2] , y=[0; 2; 4; 3; 1]

x =

 0 0.5000 1.0000 1.5000 2.0000

y =

 0

 2

 4

 3

 1

 To access individual elements, try

x(2), y(3)

ans =

 0.5000

ans =

 4

x(6)

??? Index exceeds matrix dimensions.

y(0)

??? Subscript indices must either be real positive integers or

logicals.

x(2:4) % reduces the dimension of x by retaining only the elements
ranked 2 thru 4
y(end-2:end) % reduce the dimension of y and retain only the last

three elements

ans =

 0.5000 1.0000 1.5000

ans =

 4

 3

 1

 One can extract rows and columns from a given matrix. For example

a = [1 2 3;4 5 6;7 8 9]

a =

 1 2 3

 4 5 6

 7 8 9

a(:,2), a(3,:)

ans =

 2

 5

 8

ans =

 7 8 9

 Conversely, one can generate new matrices by concatenating old

vectors/matrices:

b = [a -a; a(3,:) zeros(1,3)]

b =

 1 2 3 -1 -2 -3

 4 5 6 -4 -5 -6

 7 8 9 -7 -8 -9

 7 8 9 0 0 0

 To list all the elements of a matrix and form a row vector, type

a(:)'

ans =

 1 4 7 2 5 8 3 6 9

Note that the listing starts with the elements on the first column, then the second and the

third!

 An equally-spaced vector x can be defined using the colon operator ":"
x = 0:0.5:2 % (first element, step size, last element)

x =

 0 0.5000 1.0000 1.5000 2.0000

Another example is
t = 0:.3:2*pi

t =

 Columns 1 through 7

 0 0.3000 0.6000 0.9000 1.2000 1.5000 1.8000

 Columns 8 through 14

 2.1000 2.4000 2.7000 3.0000 3.3000 3.6000 3.9000

 Columns 15 through 21

 4.2000 4.5000 4.8000 5.1000 5.4000 5.7000 6.0000

 Another way to generate an equally-spaced vector is using the 'function'
"linspace".

x=linspace(0,0.25,5) % linspace(first element, last element, number of

elements)

x =

 0 0.0625 0.1250 0.1875 0.2500

 Pointwise multiplication, division and pointwise power:
x=[1,2,3]; y=[0,2,-1];
x.*y % multiplies pointwise two vectors of the same size

x./y % no loops required for accessing individual elements

ans =

 0 4 -3

Warning: Divide by zero.

(Type "warning off MATLAB:divideByZero" to suppress this warning.)

ans =

 Inf 1 -3

x.^2
x.^y % same as x(k)^y(k) for every k

3.^x % same as 3^x(k); the output has same size as x

ans =

 1 4 9

ans =

 1.0000 4.0000 0.3333

ans =

 3 9 27

These operation are one of the main advantages of MATLAB, since they do not require
involving loops.

Basic Graphics

The most efficient way of representing the outcome of a numerical computation is to plot
the data.

Here are a few examples of MATLAB plots.
x = 0 : 0.3 : 2*pi; % low resolution
y = exp(-x).*sin(2*x);
plot(x,y)

A better resolution is obtained below
x = 0 : 0.1 : 2*pi; % higher resolution
y = exp(-x).*sin(2*x);
plot(x,y)

One can plot several curves at the same time
plot(x,y, x,sin(x)) % The two curves appear in distinct colors; both
use the same scale

MATLAB offers many formatting options for such plots, e.g.

x = 0 : 0.1 : 2*pi;

subplot(2,3,1); plot(x,y, x,sin(x)), axis auto
subplot(2,3,2); plot(x,y, x,sin(x)), axis tight
subplot(2,3,3); plot(x,y, x,sin(x)), axis tight, axis off
subplot(2,3,4); plot(x,y, x,sin(x)), axis equal
subplot(2,3,5); plot(x,y, x,sin(x)), axis([0 7 -1 1]), grid on
subplot(2,3,6); plot(x,y,'g.', x,sin(x),'ro'), axis tight, axis square

 The command subplot(m,n,p) divides the window into mxn regions (m rows and

n columns) and chooses

the pth plot for drawing into. The numbering of the regions is from left to right, then

down, as you read text.

 There are numerous plot types for the data marks
 "." – point

 "+" – plus

 "*" – star

 "d" – diamond

 "o" – circle

 "p" – pentagon

 "s" – square

 "^" – triangle

 "x" – x-mark

 Line types and line colors are, among others,
 "-" – solid line

 "--" – dashed line

 ":" – dotted line

 "-." – dash-dotted line

 "r" – red

 "y" – yellow

 "m" – magenta

 "c" – cyan

 "g" – green

 "b" – blue

 "w" – white

 "k" – black

 A 3D plot is obtained with the command plot3.

t=0:.1:2*pi;

plot3(cos(2*t), sin(2*t),t)

 You can rotate the 3D plot by invoking the command

rotate3d

Simply click the mouse button on the plot and drag. You will change in this way the viewing
angle.
Releasing the mouse button redraws the data. Type rotate3d again to turn off this feature.

Operations with figures

 figure – opens a new graphic window, numbered consecutively from the

previous window
 figure(n) – makes an existing graphic window (n) the current window; (all

graphic commands will apply

the current window)
 pause – holds up execution of the script until the user presses a key

 pause(s) – holds up the execution of the script for s seconds

 close(n) – closes the graphic window (n)

 close all – closes all graphic windows

 clf – clears everything inside the graphic window

 cla clears the plotted curves and redraws the axes

 figure('Position',[pix,piy,pwx,pwy]) – sets the size and shape of the

current window
o pix,piy – horizontal and vertical cordinates of the left bottom corner of the

window
o pwx, pwy – number of pixels in the width and height of the window

o defalut – figure('Position',[232,258,560,420])

 get(gcf) – displays the properties of the current figure, e.g. size, location, color

map, and many others
 set(gcf, 'PropertyName', PropertyArray) – changes the property

"PropertyName" of the current window
according to the data in PropertyArray, e.g.

set(gcf, 'DefaultTextColor', 'blue')

set(gcf,'PaperPosition',[0.25 2.5 4 3]);

 hold on – superposes several plots on the same graph, even if another script is

executed (default is hold off)
 hold off – recommeded to be used at the end of the script whenever hold on has

been used in the script.

Labels and titles

 xlabel('x-axis') – the string 'x-axis' is printed as a label for the x-coordinate

 ylabel('y-axis') – the string 'y-axis' is printed as a label for the y-coordinate

 title("The graph of y=f(x)') – the string 'The graph of y=f(x)' is printed as

a title of the plot
 legend('y=f(x)') – the string 'y=f(x)' is printed In a small sub-window showing

the line type or data marks
 text(x,y,'TextBody') – the string 'TextBody' is printed on the figure, starting at

the absolute coordinate (x,y) pixels.

Font size

 plot(x,y,'-', 'linewidth',3) – the defalut line width is 0.5

 xlabel('x-axis','fontsize',14) – the default font size is 12pt

