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Abstract

The arcsine law is classical result of probability theory. We toss a fair coin independently 2n
times. Denote by 2k the number of the toss on which the number of heads equals the number
of tails for the last time before the 2nth toss. Denote the random variable Xn = 2k/2n. The
arcsine law states that the limiting random variable X = limXn has a density f(x) = 1

π
√
x(1−x)

,

0 < x < 1, with cumulative distribution function F (x) = P (X ≤ x) = 2
π

arcsin(
√
x), 0 ≤ x ≤ 1.

In this talk we first show how to extend the arcsine law to the Gambler’s Ruin setting,
wherein we continue to toss the coin until the fortune := #heads−#tails satisfies |fortune| = N
for a large positive integer N . The expected number of tosses in the Gambler’s Ruin is N2.
If TN denotes the number of the toss of the “last visit” by the fortune to the initial value
0, then XN = TN/N

2 converges in law as N → ∞ to a random variable X with density

f(x) = (πx)−1/2 ∑∞
ν=−∞(−1)νe−ν

2/x, x > 0. Secondly we show a path decomposition method
that extends from the number of tosses or steps in a random walk determined by the coin toss-
ing, to the number of runs in this random walk. Here a single run consists of a series of tosses
on which the coin lands up the same each time. The approach is combinatorial in nature, and
one of the facets of the method requires one to develop a closed form of the generating function∑∞
N=0 FN (x)yN of a sequence of certain polynomials {FN (x), N ≥ 0} with combinatorial formu-

lae involving binomial coefficients. The Fibonacci-Chebyshev polynomials FN (x) are introduced
as the simplest example of such polynomials, associated to the “last visit” in Gambler’s Ruin.
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