On Factorizations of Differential Operators and Hardy-Rellich-Type Inequalities

Fritz Gesztesy (Baylor University, Waco, TX, USA)
Based on joint work with
Lance Littlejohn (Baylor University, Waco, TX, USA) Isaac Michael (Baylor University, Waco, TX, USA)

Michael Pang (University of Missouri, Columbia, MO, USA)
Richard Wellman (Westminster College, Salt Lake City, UT, USA)

Colloquium
Department of Mathematics, UCCS
September 28, 2017

(1) Topics Discussed

(2) A Warm Up: One Dimension

(3) The Multi-Dimensional Case
(4) An Outlook at Current Work

Hardy-Rellich-Type Inequalities:

- Derive the basic inequality

$$
\begin{array}{r}
\int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x \geq[(n-4) \alpha-2 \beta] \int_{\mathbb{R}^{n}}|x|^{-2}|(\nabla f)(x)|^{2} d^{n} x \\
-\alpha(\alpha-4) \int_{\mathbb{R}^{n}}|x|^{-4}|x \cdot(\nabla f)(x)|^{2} d^{n} x \\
+\beta[(n-4)(\alpha-2)-\beta] \int_{\mathbb{R}^{n}}|x|^{-4}|f(x)|^{2} d^{n} x \\
\alpha, \beta \in \mathbb{R}, f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)
\end{array}
$$

and some variations of it.

- Specialize the parameters α, β to arrive at well-known inequalities, such as the Rellich inequality and some of its ramifications.
- Use factorizations of differential operators $\left(L=T^{*} T \geq 0\right)$ as a tool to derive such inequalities.
- Illustrate the great flexibility and simplicity of this factorization approach.

Motivation and Some Literature:

Motivation: Hardy-type inequalities are at the center of certain self-adjointness proofs; they are fundamental in proving lower boundedness of Hamiltonians, relative form boundedness, etc. They're an ubiquitous presence in spectral theory

The Emphasis lies on the Method Employed: This is not an attempt to find one more elegant/short proof of Hardy-type inequalities. There exist many such proofs already. Rather, we present an elementary method, based on factorizations of even-order differential expressions that's remarkably flexible: It reproduces the well-known inequalities, but also less well-known ones, and even new ones, and in many cases produces best constants.

Based on:

F.G. and L. Littlejohn, Factorizations and Hardy-Rellich-type inequalities, to appear in Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. A Volume in Honor of Helge Holden's 60th Birthday, EMS Congress Reports, arXiv:1701.08929.
F.G., L. Littlejohn, I. Michael, and R. Wellmann, On Birman's sequence of Hardy-Rellich-type inequalities, preprint, 2017.

Hardy-Rellich-type Inequalities on $(0, \infty)$:

Consider the differential expressions

$$
T=\frac{d}{d x}+\frac{\alpha}{x}, \quad T^{+}=-\frac{d}{d x}+\frac{\alpha}{x}, \quad x>0
$$

with $\alpha, \beta \in \mathbb{R}$ (homogeneous of degree -1), which are formal adjoints to each other. Then

$$
T^{+} T=-\frac{d^{2}}{d x^{2}}+\frac{\alpha^{2}+\alpha}{x^{2}}
$$

and hence integrating by parts,

$$
\begin{aligned}
0 & \leq \int_{0}^{\infty}(T f)(x)^{2} d x=\int_{0}^{\infty} f(x)\left(T^{+} T f\right)(x) d x \\
& =\int_{0}^{\infty}\left[f^{\prime}(x)\right]^{2} d x+\left(\alpha^{2}+\alpha\right) \int_{0}^{\infty} \frac{f(x)^{2}}{x^{2}} d x, \quad f \in C_{0}^{\infty}((0, \infty))
\end{aligned}
$$

choosing f real-valued w.l.o.g. Thus, one gets the Hardy-type inequality

$$
\begin{array}{r}
\int_{0}^{\infty}\left|f^{\prime}(x)\right|^{2} d x \geq-\left(\alpha^{2}+\alpha\right) \int_{0}^{\infty} \frac{|f(x)|^{2}}{x^{2}} d x \\
\alpha, \beta \in \mathbb{R}, f \in C_{0}^{\infty}((0, \infty))
\end{array}
$$

Hardy-Rellich-type Inequalities on $(0, \infty)$ (contd.):

Maximizing w.r.t. α yields Hardy's classical inequality for the half-line

$$
\int_{0}^{\infty}\left|f^{\prime}(x)\right|^{2} d x \geq \frac{1}{4} \int_{0}^{\infty} \frac{|f(x)|^{2}}{x^{2}} d x, \quad f \in C_{0}^{\infty}((0, \infty)) .
$$

It is well-known that $1 / 4$ is optimal and the inequality is strict, i.e., equality holds if and only if $f \equiv 0$.

Hardy-Rellich-type Inequalities on $(0, \infty)$ (contd.):

Of course, that's a really old hat! Hardy, 1915, 1919, etc.
But, emboldened by this, we march on: Next, consider

$$
T=-\frac{d^{2}}{d x^{2}}+\frac{\alpha}{x} \frac{d}{d x}+\frac{\beta}{x^{2}}, \quad T^{+}=-\frac{d^{2}}{d x^{2}}-\frac{\alpha}{x} \frac{d}{d x}+\frac{\alpha+\beta}{x^{2}}, \quad x>0,
$$

with $\alpha, \beta \in \mathbb{R}$ (the differential expressions are homogeneous of degree -2), which are formal adjoints to each other. Then,

$$
T^{+} T=\frac{d^{4}}{d x^{4}}+\frac{\alpha-\alpha^{2}-2 \beta}{x^{2}} \frac{d^{2}}{d x^{2}}+\frac{2 \alpha^{2}-2 \alpha+4 \beta}{x^{3}} \frac{d}{d x}+\frac{3 \alpha \beta+\beta^{2}-6 \beta}{x^{4}}
$$

and upon integrating by parts,

$$
\begin{aligned}
0 \leq & \int_{0}^{\infty}(T f)(x)^{2} d x=\int_{0}^{\infty} f(x)\left(T^{+} T f\right)(x) d x \\
= & \int_{0}^{\infty}\left[f^{\prime \prime}(x)\right]^{2} d x-\left(\alpha-\alpha^{2}-2 \beta\right) \int_{0}^{\infty} \frac{\left[f^{\prime}(x)\right]^{2}}{x^{2}} d x \\
& +\beta(3 \alpha+\beta-6) \int_{0}^{\infty} \frac{f(x)^{2}}{x^{4}} d x, \quad f \in C_{0}^{\infty}((0, \infty)),
\end{aligned}
$$

Hardy-Rellich-type Inequalities on $(0, \infty)$ (contd.):

again choosing w.l.o.g. f real-valued.Thus,

$$
\begin{array}{r}
\int_{0}^{\infty}\left|f^{\prime \prime}(x)\right|^{2} d x \geq\left(\alpha-\alpha^{2}-2 \beta\right) \int_{0}^{\infty} \frac{\left|f^{\prime}(x)\right|^{2}}{x^{2}} d x \\
+\beta(6-\beta-3 \alpha) \int_{0}^{\infty} \frac{|f(x)|^{2}}{x^{4}} d x \\
\quad f \in C_{0}^{\infty}((0, \infty)), \alpha, \beta \in \mathbb{R}
\end{array}
$$

Choosing $\beta=\left(\alpha-\alpha^{2}\right) / 2$ yields the Rellich-type inequality

$$
\begin{array}{r}
\int_{0}^{\infty}\left|f^{\prime \prime}(x)\right|^{2} d x \geq\left[3 \alpha-(19 / 4) \alpha^{2}+2 \alpha^{3}-(1 / 4) \alpha^{4}\right] \int_{0}^{\infty} \frac{|f(x)|^{2}}{x^{4}} d x \\
f \in C_{0}^{\infty}((0, \infty))
\end{array}
$$

Hardy-Rellich-type Inequalities on $(0, \infty)$ (contd.):

Maximizing w.r.t. α yields Rellich's classical inequality for the half-line

$$
\int_{0}^{\infty}\left|f^{\prime \prime}(x)\right|^{2} d x \geq \frac{9}{16} \int_{0}^{\infty} \frac{|f(x)|^{2}}{x^{4}} d x, \quad f \in C_{0}^{\infty}((0, \infty))
$$

Again, $9 / 16$ is optimal and the inequality is strict, i.e., equality holds if and only if $f \equiv 0$.

History: Not entirely clear to us. Rellich's book dates from 1969 and treats the mult-dimensional case, but Birman had this in 1961 (translated in 1966), however, he provides no references

Birman's Sequence of Inequalities on $(0, \infty)$:

Actually, the Rellich inequality is not the end, it's just the beginning: Birman presented in 1961 (almost in passing) the following sequence of inequalities (AMS Transl. (2) 53, 23-80 (1966)):

Theorem 1.

$$
\int_{0}^{\infty}\left|f^{(n)}(x)\right|^{2} d x \geq \frac{[(2 n-1)!!]^{2}}{2^{2 n}} \int_{0}^{\infty} \frac{|f(x)|^{2}}{x^{2 n}} d x, \quad n \in \mathbb{N}, f \in C_{0}^{\infty}((0, \infty))
$$

An Extension [GLMW17] (apparently, new): The Birman inequalities work with $C_{0}^{\infty}((0, \infty))$ replaced by the space,

$$
\begin{gathered}
H_{n}([0, \infty))=\left\{f:[0, \infty) \rightarrow \mathbb{C} \mid f^{(j)} \in A C_{l o c}([0, \infty)) ; f^{(n)} \in L^{2}((0, \infty)) ;\right. \\
\left.\quad f^{(j)}(0)=0, j=0, \ldots,(n-1)\right\} \\
=\left\{f:(0, \infty) \rightarrow \mathbb{C} \mid f^{(j)} \in A C_{l o c}((0, \infty)), j=0, \ldots,(n-1) ;\right. \\
\\
\left.x^{-n} f, f^{(n)} \in L^{2}((0, \infty))\right\} .
\end{gathered}
$$

This appears to be a new observation.

Birman's Sequence of Inequalities (contd.):

Note. (i) Equality between the two spaces above requires a bit of work. (ii) $H_{n}([0, \infty))$ does NOT equal the standard Sobolev space $H_{0}^{(n)}((0, \infty))$.

Example. $g(x)=\left\{\begin{array}{ll}0, & \text { near } x=0, \\ x^{(2 n-1) / 2} / \ln (x), & \text { near } \infty,\end{array} \quad\right.$ with $g^{j} \in A C_{l o c}([0, \infty))$, $j=0, \ldots, n$, then $g \in H_{n}([0, \infty))$, but $g^{(k)} \notin L^{2}((0, \infty)), k=0, \ldots, n-1$.
(iii) $H_{n}([0, \infty))$ is a Hilbert space with scalar product

$$
(f, g)_{H_{n}([0, \infty))}=\int_{0}^{\infty} \overline{f^{(n)}(x)} g^{(n)}(x) d x
$$

(The boundary conditions $h^{(j)}(0)=0, j=0, \ldots,(n-1)$, render the kernel of $d^{n} / d x^{n}$ trivial.)

A further possible Extension: Let $p \in(1, \infty)$, then

$$
\int_{0}^{\infty}\left|f^{(n)}(x)\right|^{p} d x \geq \frac{\prod_{k=1}^{n}(k p-1)^{p}}{p^{p n}} \int_{0}^{\infty} \frac{|f(x)|^{p}}{x^{p n}} d x, \quad n \in \mathbb{N}, f \in C_{0}^{\infty}((0, \infty)) .
$$

Birman's Sequence of Inequalities on $(0, b), b<\infty$:

The Finite Interval Case $(0, b), b \in(0, \infty)$: Everything is local, thus, simply replace $(0, \infty)$ everywhere by $(0, b), C_{0}^{\infty}((0, \infty))$ by $C_{0}^{\infty}((0, b))$, etc.
One interesting difference, though! Equivalence with the standard Sobolev space $H_{0}^{(n)}((0, b))$:

$$
\begin{aligned}
H_{n, 0}([0, b])= & \{f:[0, b] \rightarrow \mathbb{C} \mid \\
& f^{(j)} \in A C([0, b]) ; f^{(n)} \in L^{2}((0, b)) ; \\
& \left.f^{(j)}(0)=0=f^{(j)}(b), j=0, \ldots,(n-1)\right\} \\
= & \left\{f:(0, b] \rightarrow \mathbb{C} \mid f^{(j)} \in A C_{l o c}((0, b]), f^{(j)}(b)=0, j=0, \ldots,(n-1) ;\right. \\
& \left.\quad x^{-n} f, f^{(n)} \in L^{2}((0, b))\right\} \\
= & H_{0}^{(n)}((0, b)), \quad b \in(0, \infty),
\end{aligned}
$$

as a consequence of the Friedrichs inequality,

$$
\left\|f^{(j)}\right\|_{L^{2}((0, b))} \leq C\left\|f^{(n)}\right\|_{L^{2}((0, b))}, \quad f \in H_{0}^{n}((0, b)), b \in(0, \infty),
$$

with $C=C(j, n, b) \in(0, \infty)$ independent of $f \in H_{0}^{n}((0, b))$.

Birman's Sequence of Ineq. on $(0, b), b<\infty$ (cont.):

Theorem 2 [GLMW17].

Let $n \in \mathbb{N}, b \in(0, \infty)$. Then the following items (i)-(iv) hold:
(i) For each $n \in \mathbb{N}$,

$$
H_{n}([0, b])=H_{0}^{n}((0, b))
$$

as sets. In particular,

$$
f \in H_{n}([0, b]) \text { implies } f^{(j)} \in L^{2}((0, b)), \quad j=0,1, \ldots, n .
$$

In addition, the norms in $H_{n}([0, b])$ and $H_{0}^{n}((0, b))$ are equivalent.
(ii) The following hold:
(α) Let $f:[0, b] \rightarrow \mathbb{C}$, with $f^{(j)} \in A C([0, b]), f^{(j)}(0)=0, j=0,1, \ldots, n-1$, and $f^{(n)} \in L^{2}((0, b))$. (No b.c.'s at endpoint $\left.b!\right)$ Then,

$$
\int_{0}^{b}\left|f^{(n)}(x)\right|^{2} d x \geq \frac{[(2 n-1)!!]^{2}}{2^{2 n}} \int_{0}^{b} \frac{|f(x)|^{2}}{x^{2 n}} d x
$$

Birman's Sequence of Ineq. on $(0, b), b<\infty$ (cont.):

Theorem 2 (contd.) [GLMW17].

(ii) (contd.)
(β) If $f:[a, b] \rightarrow \mathbb{C}$, with $f^{(j)} \in A C([0, b]), f^{(j)}(b)=0, j=0,1, \ldots, n-1$, and $f^{(n)} \in L^{2}((0, b))$. Then,

$$
\int_{0}^{b}\left|f^{(n)}(x)\right|^{2} d x \geq \frac{[(2 n-1)!!]^{2}}{2^{2 n}} \int_{0}^{b} \frac{|f(x)|^{2}}{(b-x)^{2 n}} d x
$$

(γ) Introducing the distance of $x \in(0, b)$ to the boundary $\{0, b\}$ of $(0, b)$ by $d(x)=\min \{x,|b-x|\}, x \in(0, b)$, one has

$$
\int_{0}^{b}\left|f^{(n)}(x)\right|^{2} d x \geq \frac{[(2 n-1)!!]^{2}}{2^{2 n}} \int_{0}^{b} \frac{|f(x)|^{2}}{d(x)^{2 n}} d x, \quad f \in H_{0}^{n}((0, b)) .
$$

In all cases $(\alpha)-(\gamma)$, if $f \not \equiv 0$, the above inequalities are strict.
(iii) The constant $[(2 n-1)!!]^{2} / 2^{2 n}$ is sharp.

The Vector-Valued Case:

Extensions to the vector-valued case: Consider a complex, separable Hilbert space \mathcal{H}, the inner product in $L^{2}((a, b) ; \mathcal{H})$, in obvious notation, then reads

$$
(f, g)_{L^{2}((a, b) ; \mathcal{H})}=\int_{a}^{b}(f(x), g(x))_{\mathcal{H}} d x, \quad f, g \in L^{2}((a, b) ; \mathcal{H}) .
$$

In other words, $L^{2}((a, b) ; \mathcal{H})$ can be identified with the constant fiber direct integral of Hilbert spaces, $L^{2}((a, b) ; \mathcal{H}) \simeq \int_{(a, b)}^{\oplus} \mathcal{H} d x$, and similarly one introduces $H_{n}([0, \infty) ; \mathcal{H})$.

Theorem 3 [GLMW17].

For $0 \neq f \in H_{n}([0, \infty) ; \mathcal{H})$, one has (with $[(2 n-1)!!]^{2} / 2^{2 n}$ being sharp)

$$
\int_{0}^{\infty}\left\|f^{(n)}(x)\right\|_{\mathcal{H}}^{2} d x>\frac{[(2 n-1)!!]^{2}}{2^{2 n}} \int_{0}^{\infty} \frac{\|f(x)\|_{\mathcal{H}}^{2}}{x^{2 n}} d x, \quad n \in \mathbb{N}
$$

Note. The case $n=1$ played a role in spectral and scattering theory for Schrödinger operators in \mathbb{R}^{d} (Agmon, Kuroda) with $\mathcal{H}=L^{2}\left(S^{d-1} ; d^{d-1} \omega\right)$, $d \in \mathbb{N}, d \geq 2$.

The Vector-Valued Case (contd.): $b \in(0, \infty)$

Consider the finite interval case $(0, b), b \in(0, \infty)$ and introduce (with $n \in \mathbb{N}$),

$$
\begin{aligned}
H_{n}([0, b] ; \mathcal{H}):=\{f:[0, b] \rightarrow \mathcal{H} \mid & f^{(n)} \in L^{2}((0, b) ; \mathcal{H}) ; f^{(j)} \in A C([0, b] ; \mathcal{H}) ; \\
& \left.f^{(j)}(0)=0=f^{(j)}(b), j=0,1, \ldots, n-1\right\},
\end{aligned}
$$

and the standard \mathcal{H}-valued Sobolev spaces,

$$
\begin{aligned}
H^{n}((0, b) ; \mathcal{H})=\left\{f:[0, b] \rightarrow \mathcal{H} \mid f^{(j)} \in\right. & A C([0, b] ; \mathcal{H}), j=0,1, \ldots, n-1 ; \\
& \left.f^{(k)} \in L^{2}((0, b) ; \mathcal{H}), k=0,1, \ldots, n\right\} \\
H_{0}^{n}((0, b) ; \mathcal{H})=\left\{f \in H^{n}((0, b) ; \mathcal{H}) \mid\right. & \left.f^{(j)}(0)=0=f^{(j)}(b), j=0,1, \ldots, n-1\right\} .
\end{aligned}
$$

Again, the vector-valued Friedrichs inequality

$$
\|f\|_{L^{2}((0, b) ; \mathcal{H})} \leq b\left\|f^{\prime}\right\|_{L^{2}((0, b) ; \mathcal{H})}, \quad f \in H_{1}([0, b] ; \mathcal{H})
$$

yields $H_{1}([0, b] ; \mathcal{H})=H_{0}^{1}((0, b) ; \mathcal{H})$, and upon iteration,

$$
H_{n}([0, b] ; \mathcal{H})=H_{0}^{n}((0, b) ; \mathcal{H}), \quad n \in \mathbb{N} .
$$

The Vector-Valued Case (contd.): $b \in(0, \infty)$

Theorem 4 [GLMW17].

Let $n \in \mathbb{N}, b \in(0, \infty)$. Then
(i) For each $n \in \mathbb{N}$,

$$
H_{n}([0, b] ; \mathcal{H})=H_{0}^{n}((0, b) ; \mathcal{H})
$$

as sets. In particular,

$$
f \in H_{n}([0, b] ; \mathcal{H}) \text { implies } f^{(j)} \in L^{2}((0, b) ; \mathcal{H}), \quad j=0,1, \ldots, n .
$$

In addition, the norms in $H_{n}([0, b] ; \mathcal{H})$ and $H_{0}^{n}((0, b) ; \mathcal{H})$ are equivalent.
(ii) Recalling $d(x)=\min \{x,|b-x|\}, x \in(0, b)$, one has

$$
\int_{0}^{b}\left\|f^{(n)}(x)\right\|_{\mathcal{H}}^{2} d x \geq \frac{[(2 n-1)!!]^{2}}{2^{2 n}} \int_{0}^{b} \frac{\|f(x)\|_{\mathcal{H}}^{2}}{d(x)^{2 n}} d x, \quad f \in H_{0}^{n}((0, b)) .
$$

If $f \not \equiv 0$, the above inequality is strict.
(iii) The constant $[(2 n-1)!!]^{2} / 2^{2 n}$ is sharp.

Much more could be done, but on to multi-dimensions.

A Fundamental Inequality:

At first we focus on one point singularity, but eventually illustrate how any finite number, even countably infinitely many, can be handled in applications.

Theorem 5 (G., Littlejohn, 2016).

Let $\alpha, \beta \in \mathbb{R}$, and $f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right), n \in \mathbb{N}, n \geq 2$. Then,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x \geq & {[(n-4) \alpha-2 \beta] \int_{\mathbb{R}^{n}}|x|^{-2}|(\nabla f)(x)|^{2} d^{n} x } \\
& -\alpha(\alpha-4) \int_{\mathbb{R}^{n}}|x|^{-4}|x \cdot(\nabla f)(x)|^{2} d^{n} x \\
& +\beta[(n-4)(\alpha-2)-\beta] \int_{\mathbb{R}^{n}}|x|^{-4}|f(x)|^{2} d^{n} x .
\end{aligned}
$$

In addition, if either $\alpha \leq 0$ or $\alpha \geq 4$, then,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x \geq & {[\alpha(n-\alpha)-2 \beta] \int_{\mathbb{R}^{n}}|x|^{-2}|(\nabla f)(x)|^{2} d^{n} x } \\
& +\beta[(n-4)(\alpha-2)-\beta] \int_{\mathbb{R}^{n}}|x|^{-4}|f(x)|^{2} d^{n} x
\end{aligned}
$$

A Fundamental Inequality (contd.):

Note. By locality, these inequalities naturally extend to the case where \mathbb{R}^{n} is replaced by an arbitrary open set $\Omega \subset \mathbb{R}^{n}$ for functions $f \in C_{0}^{\infty}(\Omega \backslash\{0\})$ (without changing the constants in these inequalities).
Sketch of Proof of Theorem 5. Consider, with $\alpha, \beta \in \mathbb{R}$,

$$
T_{\alpha, \beta}:=-\Delta+\alpha|x|^{-2} x \cdot \nabla+\beta|x|^{-2}, \quad x \in \mathbb{R}^{n} \backslash\{0\}
$$

(homogeneous of degree -2) and its formal adjoint, denoted by $T_{\alpha, \beta}^{+}$,

$$
T_{\alpha, \beta}^{+}:=-\Delta-\alpha|x|^{-2} x \cdot \nabla+[\beta-\alpha(n-2)]|x|^{-2}, \quad x \in \mathbb{R}^{n} \backslash\{0\} .
$$

Then, for $f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$,

$$
\begin{aligned}
\left(T_{\alpha, \beta}^{+} T_{\alpha, \beta} f\right)(x)= & \left(\Delta^{2} f\right)(x)+[(n-4) \alpha-2 \beta]|x|^{-2}(\Delta f)(x) \\
& +\alpha(4-\alpha)|x|^{-4} \sum_{j, k=1}^{n} x_{j} x_{k} f_{x_{j}, x_{k}}(x) \\
& +\left[-(n-3) \alpha^{2}+2(n-2) \alpha+4 \beta\right]|x|^{-4} x \cdot(\nabla f)(x) \\
& +\left[\beta^{2}+2(n-4) \beta-(n-4) \alpha \beta\right]|x|^{-4} f(x) .
\end{aligned}
$$

A Fundamental Inequality (contd.):

Again, assuming $f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ to be real-valued, integrating by parts (observing the support properties of f, which results in vanishing surface terms), results in (not without some tears involved)

$$
\begin{aligned}
0 \leq & \int_{\mathbb{R}^{n}}\left[\left(T_{\alpha, \beta} f\right)(x)\right]^{2} d^{n} x=\int_{\mathbb{R}^{n}} f(x)\left(T_{\alpha, \beta}^{+} T_{\alpha, \beta} f\right)(x) d^{n} x \\
= & \int_{\mathbb{R}^{n}}[(\Delta f)(x)]^{2} d^{n} x+[(n-4) \alpha-2 \beta] \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|x|^{-2} f(x)(\Delta f)(x) d^{n} x \\
& +\alpha(\alpha-4) \sum_{j, k=1}^{n} \int_{\mathbb{R}^{n}}|x|^{-4} f(x) x_{j} x_{k} f_{x_{j}, x_{k}}(x) d^{n} x \\
& +\left[-(n-3) \alpha^{2}+2(n-2) \alpha+4 \beta\right] \int_{\mathbb{R}^{n}}|x|^{-4} f(x)[x \cdot(\nabla f)(x)] d^{n} x \\
& +\left[\beta^{2}+2(n-4) \beta-(n-4) \alpha \beta\right] \int_{\mathbb{R}^{n}}|x|^{-4} f(x)^{2} d^{n} x .
\end{aligned}
$$

A Fundamental Inequality (contd.):

To simplify matters we make two observations. First, a standard integration by parts (again observing the support properties of f) yields

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|x|^{-2} f(x)(\Delta f)(x) d^{n} x= & 2 \int_{\mathbb{R}^{n}}|x|^{-4} f(x)\left(x \cdot(\nabla f)(x) d^{n} x\right. \\
& -\int_{\mathbb{R}^{n}}|x|^{-2}|(\nabla f)(x)|^{2} d^{n} x .
\end{aligned}
$$

Similarly, one confirms that

$$
\begin{aligned}
\sum_{j, k=1}^{n} \int_{\mathbb{R}^{n}} x_{j} x_{k} f(x) f_{x_{j}, x_{k}}(x)= & -(n-3) \int_{\mathbb{R}^{n}}|x|^{-4} f(x)[x \cdot(\nabla f)(x)] d^{n} x \\
& -\int_{\mathbb{R}^{n}}|x|^{-4}[x \cdot(\nabla f)(x)]^{2} d^{n} x
\end{aligned}
$$

This yields the 1st inequality in the theorem.

A Fundamental Inequality (contd.):

Since by Cauchy's inequality,

$$
-\int_{\mathbb{R}^{n}}|x|^{-4}[x \cdot(\nabla f)(x)]^{2} d^{n} x \geq-\int_{\mathbb{R}^{n}}|x|^{-2}|(\nabla f)(x)|^{2} d^{n} x,
$$

one concludes that as long as $\alpha(\alpha-4) \geq 0$, that is, as long as either $\alpha \leq 0$ or $\alpha \geq 4$, one arrives at the 2 nd inequality in the theorem.

In principle, a "nice" calculus exercise!

Believe it or not, this is actually useful as we shall see next:

Consequences of the Fundamental Inequality:

Corollary 6 (Rellich's Inequality).

Let $n \in \mathbb{N}, n \geq 5$, and $f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. Then,

$$
\int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x \geq\left[\frac{n(n-4)}{4}\right]^{2} \int_{\mathbb{R}^{n}}|x|^{-4}|f(x)|^{2} d^{n} x
$$

The constant $[n(n-4) / 4]^{2}$ is known to be optimal.

Sketch of Proof. Choosing $\beta=\alpha(n-\alpha) / 2$ in the 2 nd inequality in Theorem 5 results in

$$
\int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x \geq G_{n}(\alpha) \int_{\mathbb{R}^{n}}|x|^{-4}|f(x)|^{2} d^{n} x
$$

with

$$
G_{n}(\alpha)=\alpha(n-\alpha)\{(n-4)(\alpha-2)-[\alpha(n-\alpha) / 2]\} / 2 .
$$

Maximizing $G_{n}(\alpha)$ with respect to α yields Rellich's inequality.

Consequences of the Fundamental Inequ. (contd.):

Corollary 7

Let $n \in \mathbb{N}$ and $f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. Then,

$$
\int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x \geq \frac{n^{2}}{4} \int_{\mathbb{R}^{n}}|x|^{-2}|(\nabla f)(x)|^{2} d^{n} x, \quad n \geq 8
$$

and

$$
\int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x \geq 4(n-4) \int_{\mathbb{R}^{n}}|x|^{-2}|(\nabla f)(x)|^{2} d^{n} x, \quad 5 \leq n \leq 7 .
$$

In addition,

$$
\int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x \geq \frac{n^{2}}{4} \int_{\mathbb{R}^{n}}|x|^{-4}|x \cdot(\nabla f)(x)|^{2} d^{n} x, \quad n \geq 2
$$

Note. The constant $4(n-4)$ for $n=5,6,7$ should be $n^{2} / 4$, so that seems to be one mysterious instance where this method may not yield an optimal constant.

Consequences of the Fundamental Inequ. (contd.):

Sketch of Proof of Corollary 7. Choosing $\beta=0$ in the 2nd inequality in Theorem 5 yields

$$
\int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x \geq \alpha(n-\alpha) \int_{\mathbb{R}^{n}}|x|^{-2}|(\nabla f)(x)|^{2} d^{n} x
$$

Maximizing $F_{n}(\alpha)=\alpha(n-\alpha)$ with respect to α yields a maximum at $\alpha_{1}=n / 2$, and subjecting it to the constraint $\alpha \geq 4$ proves the 1st inequality of Corollary 7.

Choosing $\alpha=4, \beta=0$ in the 1st inequality in Theorem 5 yields the 2nd inequality of Corollary 7 .

Consequences of the Fundamental Inequ. (contd.):

The choice $\beta=(n-4)(\alpha-2)$ in the 1st inequality in Theorem 5 results in

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x \geq & (n-4)(4-\alpha) \int_{\mathbb{R}^{n}}|x|^{-2}|(\nabla f)(x)|^{2} d^{n} x \\
& -\alpha(\alpha-4) \int_{\mathbb{R}^{n}}|x|^{-4}|x \cdot(\nabla f)(x)|^{2} d^{n} x .
\end{aligned}
$$

For $n \geq 2$ and $(4-n)<\alpha<4$, applying Cauchy's inequality to the 1st term on the right-hand side yields

$$
\int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x \geq K_{n}(\alpha) \int_{\mathbb{R}^{n}}|x|^{-4}|x \cdot(\nabla f)(x)|^{2} d^{n} x
$$

where $K_{n}(\alpha)=-(\alpha+n-4)(\alpha-4)$. Maximizing K_{n} subject to the constraint ($4-n$) $<\alpha<4$ yields the 3rd inequality of Corollary 7 .

Other Consequences: Schmincke's Inequality

Our method recovers (actually, extends) Schmincke's one-parameter family of inequalities from 1972:

Corollary 8 (Schmincke's 1972 Inequality).

Let $n \in \mathbb{N}, n \geq 5$, and $f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. Then,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x \geq-s \int_{\mathbb{R}^{n}}|x|^{-2}|(\nabla f)(x)|^{2} d^{n} x \\
&+[(n-4) / 4]^{2}\left(4 s+n^{2}\right) \int_{\mathbb{R}^{n}}|x|^{-4}|f(x)|^{2} d^{n} x, \\
& s \in\left[-2^{-1} n(n-4), \infty\right) .
\end{aligned}
$$

Sketch of Proof. Choose $\beta=2^{-1}(n-4)\left[\alpha-2-4^{-1}(n-4)\right]$, and the introduction of the new variable $s=s(\alpha)=\alpha^{2}-4 \alpha-2^{-1} n(n-4)$, in the fundamental two-parameter inequality in Theorem 5.

Note. Particular choices of s reproduce Rellich's inequality (Corollary 6) and also some of the inequalities in Corollary 7 as special cases.

Back to Hardy's Inequality and Some Refinements:

I first started to look into factorizations well over 30 years ago: Let $n \geq 3$ and consider

$$
T_{\alpha}:=\nabla+\alpha|x|^{-2} x, \quad x \in \mathbb{R}^{n} \backslash\{0\},
$$

with formal adjoint

$$
T_{\alpha}^{+}=-\operatorname{div}(\cdot)+\alpha|x|^{-2} x \cdot, \quad x \in \mathbb{R}^{n} \backslash\{0\},
$$

such that (e.g., on $C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$-functions),

$$
T_{\alpha}^{+} T_{\alpha}=-\Delta+\alpha(\alpha+2-n)|x|^{-2} .
$$

Repeating earlier steps and optimizing w.r.t. α readily yields Hardy's classical inequality

$$
\int_{\mathbb{R}^{n}}|(\nabla f)(x)|^{2} d^{n} x \geq \frac{(n-2)^{2}}{4} \int_{\mathbb{R}^{n}}|x|^{-2}|f(x)|^{2} d^{n} x, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right), n \geq 3 .
$$

The constant $(n-2)^{2} / 4$ is optimal.

Some Refinements Hardy's Inequality:

Similarly, assuming $n \geq 3$ and introducing the refinement (radial derivative),

$$
\widetilde{T}_{\alpha}:=\left(|x|^{-1} x\right) \cdot \nabla+\alpha|x|^{-1}, \quad x \in \mathbb{R}^{n} \backslash\{0\}
$$

with formal adjoint,

$$
\left(\widetilde{T}_{\alpha}\right)^{+}=-\left(|x|^{-1} x\right) \cdot \nabla+(\alpha-n+1)|x|^{-1}, \quad x \in \mathbb{R}^{n} \backslash\{0\},
$$

one computes (e.g., on $C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$-functions),

$$
\begin{aligned}
\left(\widetilde{T}_{\alpha}\right)^{+} \widetilde{T}_{\alpha}= & -|x|^{-2} \sum_{j, k=1}^{n} x_{j} x_{k} \partial_{x_{j}} \partial_{x_{k}}-(n-1)|x|^{-2}[x \cdot(\nabla f)(x)] \\
& +\alpha(\alpha+2-n)|x|^{-2}, \quad x \in \mathbb{R}^{n} \backslash\{0\} .
\end{aligned}
$$

Proceeding as before yields
$\int_{\mathbb{R}^{n}}\left|\left[|x|^{-1} x \cdot \nabla f\right](x)\right|^{2} d^{n} x \geq \alpha[(n-2)-\alpha] \int_{\mathbb{R}^{n}}|x|^{-2}|f(x)|^{2} d^{n} x, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$.

Some Refinements Hardy's Inequality (contd.):

Maximizing $\alpha[(n-2)-\alpha]$ with respect to α yields the improved/refined Hardy inequality involving the radial derivative, $\partial / \partial r=|x|^{-1} x \cdot \nabla$,

$$
\begin{array}{r}
\int_{\mathbb{R}^{n}}\left|\left[|x|^{-1} x \cdot \nabla f\right](x)\right|^{2} d^{n} x \geq \frac{(n-2)^{2}}{4} \int_{\mathbb{R}^{n}}|x|^{-2}|f(x)|^{2} d^{n} x, \\
f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right), n \geq 3 .
\end{array}
$$

The constant $(n-2)^{2} / 4$ is optimal.

Logarithmic Refinements of Hardy's Inequality:

As an example we just consider the Hardy case: For $\gamma>0, x \in \mathbb{R}^{n}, n \in \mathbb{N}, n \geq 2$, $|x|<\gamma$, introduce iterated logarithms of the form

$$
\begin{aligned}
& (-\ln (|x| / \gamma))_{0}=1, \\
& (-\ln (|x| / \gamma))_{1}=(-\ln (|x| / \gamma)), \\
& (-\ln (|x| / \gamma))_{k+1}=\ln \left((-\ln (|x| / \gamma))_{k}\right), \quad k \in \mathbb{N},
\end{aligned}
$$

and introduce

$$
\begin{array}{r}
T_{y}=\nabla+2^{-1}|x-y|^{-2}\left\{(n-2)+\sum_{j=1}^{m} \prod_{k=1}^{j}\left[(-\ln (|x-y| / \gamma))_{k}\right]^{-1}\right\}(x-y) \\
0<|x|<r, r<\gamma, m \in \mathbb{N}, n \in \mathbb{N}, n \geq 2
\end{array}
$$

Logarithmic Refinements of Hardy's Inequ. (contd.):

With T_{y}^{+}the formal adjoint of T_{y}, one obtains for $f \in C_{0}^{\infty}\left(B_{n}(y ; r) \backslash\{y\}\right)$ (with $B_{n}\left(x_{0} ; r_{0}\right)$ the open ball in \mathbb{R}^{n} with center $x_{0} \in \mathbb{R}^{n}$ and radius $\left.r_{0}>0\right)$

$$
\begin{aligned}
\left(T_{y}^{+} T_{y} f\right)(x)= & (-\Delta f)(x)-4^{-1}|x-y|^{-2}\left\{(n-2)^{2}\right. \\
& \left.+\sum_{j=1}^{m} \sum_{k=1}^{j}\left[(-\ln (|x-y| / \gamma))_{k}\right]^{-2} f(x)\right\} f(x), \quad m \in \mathbb{N}, n \in \mathbb{N}, n \geq 2
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left.\int_{B(y ; r)}|(\nabla f)(x)|^{2} d^{n} x \geq \frac{1}{4} \int_{B(y ; r)} \right\rvert\,|x-y|^{-2}\left\{(n-2)^{2}\right. \\
&\left.+\sum_{j=1}^{m} \prod_{k=1}^{j}\left[(-\ln (|x-y| / \gamma))_{k}\right]^{-2}\right\}|f(x)|^{2} d^{n} x, \\
& 0<r<\gamma, f \in C_{0}^{\infty}(B(y ; r) \backslash\{y\}), m \in \mathbb{N} \cup\{0\}, n \in \mathbb{N}, n \geq 2
\end{aligned}
$$

Logarithmic Refinements of Hardy's Inequ. (contd.):

Explicitly,

$$
\begin{array}{r}
\int_{B(y ; r)}|(\nabla f)(x)|^{2} d^{n} x \geq \int_{B(y ; r)}\left\{\frac{(n-2)^{2}}{4|x-y|^{2}}+\frac{1}{4|x-y|^{2}[(-\ln (|x-y| / \gamma))]^{2}}\right. \\
\left.+\frac{1}{4|x-y|^{2}[(-\ln (|x-y| / \gamma))]^{2}[\ln (-\ln (|x-y| / \gamma))]^{2}}+\cdots \cdots\right\}|f(x)|^{2} d^{n} x, \\
0<r<\gamma, f \in C_{0}^{\infty}(B(y ; r) \backslash\{y\}), m \in \mathbb{N} \cup\{0\}, n \in \mathbb{N}, n \geq 2 .
\end{array}
$$

Again, this extends to arbitrary open bounded sets $\Omega \subset \mathbb{R}^{n}$ as long as γ is chosen sufficiently large (e.g., larger than the diameter of Ω). The constants $(n-2)^{2} / 4$ and $1 / 4$ are optimal.

Applications to Lower Semiboundedness and Form Boundedness:

In their simplest form, these inequalities focus on $\mathbb{R}^{n} \backslash\{0\}$ or $\Omega \backslash\left\{x_{0}\right\}, \Omega \subset \mathbb{R}^{n}$ open and bounded, $x_{0} \in \Omega$, etc., and yield sufficient conditions for semiboundedness from below for L^{2}-realizations of strongly singular differential expressions of the form

$$
(-\Delta)^{m}+V(x), \quad m \in \mathbb{N}, x \in \mathbb{R}^{n} \backslash\{0\} \quad\left(\text { or } x \in \Omega \backslash\left\{x_{0}\right\}\right)
$$

However, this represents just the tip of the iceberg and much more is possible: As long as there are countably many singularities, all uniformly separated from each other by some fixed distance $\varepsilon_{0}>0$ (e.g., the singularities could define a lattice), one can localize around each singularity and thus obtain semiboundedness (and self-adjointness) for the entire system with countably many such singularities.
This idea of localizing, going back to J. D. Morgan, JOT 1, 109-115 (1979), has recently again been used in
[GMNT16]: F.G., M. Mitrea, I. Nenciu, and G. Teschl, Adv. Math. 301, 1022-1061 (2016).

Applications to Lower Semiboundedness and Form Boundedness (contd.):

We will aim at $(-\Delta)^{2}+W$, where W has countably many strong singularities.

Theorem 9 ([GMNT16], abstracting Morgan, JOT 1, 109-115 (1979))

Suppose that T, W are self-adjoint operators in \mathcal{H} such that $\operatorname{dom}\left(|T|^{1 / 2}\right) \subseteq \operatorname{dom}\left(|W|^{1 / 2}\right)$, and let $c, d \in(0, \infty)$, $e \in[0, \infty)$. Moreover, suppose $\Phi_{j} \in \mathcal{B}(\mathcal{H}), j \in J, J \in \mathbb{N}$ an index set, leave dom $\left(|T|^{1 / 2}\right)$ invariant, i.e., $\Phi_{j} \operatorname{dom}\left(|T|^{1 / 2}\right) \subseteq \operatorname{dom}\left(|T|^{1 / 2}\right), j \in J$, and satisfy conditions (i)-(iii):
(i) $\sum_{j \in J} \Phi_{j}^{*} \Phi_{j} \leq I_{\mathcal{H}}$.
(ii) $\sum_{j \in J} \Phi_{j}^{*}|W| \Phi_{j} \geqslant c^{-1}|W|$ on $\operatorname{dom}\left(|T|^{1 / 2}\right)$.
(iii) $\sum_{j \in J}\left\||T|^{1 / 2} \Phi_{j} f\right\|_{\mathcal{H}}^{2} \leqslant d\left\||T|^{1 / 2} f\right\|_{\mathcal{H}}^{2}+e\|f\|_{\mathcal{H}}^{2}, \quad f \in \operatorname{dom}\left(|T|^{1 / 2}\right)$.

Then,

$$
\left\||W|^{1 / 2} \Phi_{j} f\right\|_{\mathcal{H}}^{2} \leqslant a\left\||T|^{1 / 2} \Phi_{j} f\right\|_{\mathcal{H}}^{2}+b\left\|\Phi_{j} f\right\|_{\mathcal{H}}^{2}, \quad f \in \operatorname{dom}\left(|T|^{1 / 2}\right), j \in J,
$$

implies

$$
\left\||W|^{1 / 2} f\right\|_{\mathcal{H}}^{2} \leqslant a c d\left\||T|^{1 / 2} f\right\|_{\mathcal{H}}^{2}+[a c e+b c]\|f\|_{\mathcal{H}}^{2}, \quad f \in \operatorname{dom}\left(|T|^{1 / 2}\right) .
$$

Applications to Lower Semiboundedness and Form Boundedness (contd.):

Thus, the key for applications would be to have c and d arbitrarily close to 1 such that if $a<1$, also acd <1.
If W is local and Φ_{j} represents the operator of multiplication with bump functions $\phi_{j}, j \in J \subseteq \mathbb{N}$, such that $\phi_{j}, j \in J$ is a family of smooth, real-valued functions defined on \mathbb{R}^{n} satisfying that for each $x \in \mathbb{R}^{n}$, there exists an open neighborhood $U_{x} \subset \mathbb{R}^{n}$ of x such that there exist only finitely many indices $k \in J$ with supp $\left(\phi_{k}\right) \cap U_{x} \neq \emptyset$ and $\phi_{k} \mid U_{x} \neq 0$, as well as

$$
\sum_{j \in J} \phi_{j}(x)^{2}=1, \quad x \in \mathbb{R}^{n}
$$

(the sum over $j \in J$ being finite). Then Φ_{j} and W commute and hence

$$
\sum_{j \in J} \Phi_{j}^{*} \Phi_{j}=I_{\mathcal{H}} \text { and } \sum_{j \in J} \Phi_{j}^{*}|W| \Phi_{j}=|W| \text { on } \operatorname{dom}\left(|T|^{1 / 2}\right)
$$

yield condition (i) and also (ii) with $c=1$. (So that takes care of c).
What about d ? We'll show next that for all $\varepsilon>0$, one can choose $d=1+\varepsilon$:

Applications to Lower Semiboundedness and Form Boundedness (contd.):

Example. $m=2, T=(-\Delta)^{2}, \operatorname{dom}(T)=H^{4}\left(\mathbb{R}^{n}\right)$ in $L^{2}\left(\mathbb{R}^{n}\right), n \geq 5$, and assume that dom $\left(|T|^{1 / 2}\right) \subseteq \operatorname{dom}\left(|W|^{1 / 2}\right)$ (relative form boundedness). Then for arbitrary $\varepsilon>0$, also condition (iii) holds with $d=1+\varepsilon$ as long as

$$
\sum_{j \in J} \phi_{j}(\cdot)^{2}=1, \quad\left\|\sum_{j \in J}\left|\nabla \phi_{j}(\cdot)\right|^{2}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}<\infty, \quad\left\|\sum_{j \in J}\left|\left(\Delta \phi_{j}\right)(\cdot)\right|^{2}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}<\infty
$$

To verify this, one observes that for all $\varepsilon>0$,

$$
\begin{gathered}
\sum_{j \in J}\left\||T|^{1 / 2}\left(\phi_{j} f\right)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=\sum_{j \in J} \int_{\mathbb{R}^{n}}\left|\Delta\left(\phi_{j} f\right)(x)\right|^{2} d^{n} x \\
\leq(1+\varepsilon) \int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x+C_{\varepsilon}\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}
\end{gathered}
$$

thus, $d=1+\varepsilon$ in condition (iii).

Applications to Lower Semiboundedness and Form Boundedness (contd.):

This follows from the elementary estimate (for some constant $C_{\varepsilon} \in(0, \infty)$):

$$
\begin{aligned}
& \sum_{j \in J} \int_{\mathbb{R}^{n}}\left|\Delta\left(\phi_{j} f\right)(x)\right|^{2} d^{n} x \leq \int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x \quad\left(\longleftrightarrow \sum_{j \in J} \phi_{j}(\cdot)^{2}=1\right) \\
& \quad+\left\|\sum_{j \in J}\left|\left(\Delta \phi_{j}\right)(\cdot)\right|^{2}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& \quad+4\left\|\sum _ { j \in J } \left|(\Delta \phi _ { j }) (\cdot) \left\|(\nabla \phi _ { j }) (\cdot) \left|\left\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \int_{\mathbb{R}^{n}}|(\nabla f)(x) \| f(x)| d^{n} x\right.\right.\right.\right.\right. \\
& \quad+2\left\|\sum _ { j \in J } \left|(\Delta \phi _ { j }) (\cdot) \left\|\phi _ { j } (\cdot) \left|\left\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \int_{\mathbb{R}^{n}}|(\Delta f)(x) \| f(x)| d^{n} x\right.\right.\right.\right.\right. \\
& \quad+4\left\|\sum _ { j \in J } \left|\phi _ { j } (\cdot) \left\|(\nabla \phi _ { j }) (\cdot) \left|\left\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \int_{\mathbb{R}^{n}}|(\nabla f)(x) \|(\Delta f)(x)| d^{n} x\right.\right.\right.\right.\right. \\
& \leq(1+\varepsilon) \int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x+C_{\varepsilon}\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}, \quad f \in H^{2}\left(\mathbb{R}^{n}\right) .
\end{aligned}
$$

Applications to Lower Semiboundedness and Form Boundedness (contd.):

Strongly singular potentials W that are covered by Theorem 9 are, e.g., of the following form: Let $J \subseteq \mathbb{N}$ be an index set, and $\left\{x_{j}\right\}_{j \in J} \subset \mathbb{R}^{n}, n \in \mathbb{N}, n \geq 5$, be a set of points such that

$$
\inf _{\substack{j j^{\prime} \in J \\ j \neq j^{\prime}}}\left|x_{j}-x_{j^{\prime}}\right|>0 \quad \text { (e.g., a lattice of points). }
$$

Let ϕ be a nonnegative smooth function which equals 1 in $B_{n}(0 ; 1 / 2)$ and vanishes outside $B_{n}(0 ; 1)$. Let $\sum_{j \in J} \phi\left(x-x_{j}\right)^{2} \geqslant 1 / 2, x \in \mathbb{R}^{n}$, and set
$\phi_{j}(x)=\phi\left(x-x_{j}\right)\left[\sum_{j^{\prime} \in J} \phi\left(x-x_{j^{\prime}}\right)^{2}\right]^{-1 / 2}, x \in \mathbb{R}^{n}, j \in J$, such that $\sum_{j \in J} \phi_{j}(x)^{2}=1, x \in \mathbb{R}^{n}$. In addition, let $\gamma_{j} \in \mathbb{R}, j \in J, \gamma, \delta \in(0, \infty)$ with

$$
\left.\left|\gamma_{j}\right| \leq \gamma<[n(n-4) / 4]^{2}, \quad j \in J \text { (the Rellich constant } \ldots . .\right)
$$

and consider

$$
W_{0}(x)=\sum_{j \in J} \gamma_{j}\left|x-x_{j}\right|^{-4} e^{-\delta\left|x-x_{j}\right|}, \quad x \in \mathbb{R}^{\rrbracket} \backslash\left\{x_{j}\right\}_{j \in J}
$$

Then by Rellich's inequality in $\mathbb{R}^{n}, n \geq 5, W_{0}$ is form bounded with respect to $T=(-\Delta)^{2}$ with form bound strictly less than one.

Some Extensions:

Current joint work with Michael Pang focuses on "radial extensions": Recalling the improved/refined Hardy inequality involving the radial derivative, $\left(|x|^{-1} x \cdot \nabla f\right)(x):=\partial f / \partial r(x)$, if $f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right), n \geq 3$, then

$$
\int_{\mathbb{R}^{n}}|(\nabla f)(x)|^{2} d^{n} x \geq \underbrace{\int_{\mathbb{R}^{n}}\left|\frac{\partial f}{\partial r}(x)\right|^{2} d^{n} x}_{\text {improvement }} \geq \frac{(n-2)^{2}}{4} \int_{\mathbb{R}^{n}}|x|^{-2}|f(x)|^{2} d^{n} x
$$

Thus, we conjectured, and then proved, that also the Rellich inequality (in fact, the entire sequence of higher-order Hardy-Rellich inequalities) extends in this radial context:

Some Extensions:

E.g., if $f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right), n \in \mathbb{N}, n \geq 5$, then,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|(\Delta f)(x)|^{2} d^{n} x & \geq \underbrace{\int_{\mathbb{R}^{n}}\left|\frac{\partial^{2} f}{\partial r^{2}}(x)+\frac{n-1}{|x|} \frac{\partial f}{\partial r}(x)\right|^{2} d^{n} x}_{\text {improvement }} \\
& \geq\left[\frac{n(n-4)}{4}\right]^{2} \int_{\mathbb{R}^{n}}|x|^{-4}|f(x)|^{2} d^{n} x .
\end{aligned}
$$

Indeed, Machihara, Ozawa, Wadade, Math. Z. 286, 1367-1373 (2017), just published this. Still, we have a different proof and further extensions

