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Topics Discussed

Hardy–Rellich-Type Inequalities:

• Derive the basic inequality

Z

Rn

|(�f )(x)|2 dnx � [(n � 4)↵� 2�]

Z

Rn

|x |�2|(rf )(x)|2 dnx

� ↵(↵� 4)

Z

Rn

|x |�4|x · (rf )(x)|2 dnx

+ �[(n � 4)(↵� 2)� �]

Z

Rn

|x |�4|f (x)|2 dnx ,

↵,� 2 R, f 2 C1
0 (Rn\{0}),

and some variations of it.

• Specialize the parameters ↵,� to arrive at well-known inequalities, such as the
Rellich inequality and some of its ramifications.

• Use factorizations of di↵erential operators (L = T ⇤T � 0) as a tool to derive
such inequalities.

• Illustrate the great flexibility and simplicity of this factorization approach.
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Topics Discussed

Motivation and Some Literature:

Motivation: Hardy-type inequalities are at the center of certain
self-adjointness proofs; they are fundamental in proving lower boundedness of
Hamiltonians, relative form boundedness, etc. They’re an ubiquitous presence
in spectral theory .....

The Emphasis lies on the Method Employed: This is not an attempt to find
one more elegant/short proof of Hardy-type inequalities. There exist many such
proofs already. Rather, we present an elementary method, based on
factorizations of even-order di↵erential expressions that’s remarkably flexible: It
reproduces the well-known inequalities, but also less well-known ones, and even
new ones, and in many cases produces best constants.

Based on:

F.G. and L. Littlejohn, Factorizations and Hardy–Rellich-type inequalities, to
appear in Partial Di↵erential Equations, Mathematical Physics, and Stochastic
Analysis. A Volume in Honor of Helge Holden’s 60th Birthday, EMS Congress
Reports, arXiv:1701.08929.

F.G., L. Littlejohn, I. Michael, and R. Wellmann, On Birman’s sequence of
Hardy–Rellich-type inequalities, preprint, 2017.
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A Warm Up: One Dimension

Hardy–Rellich-type Inequalities on (0,1):

Consider the di↵erential expressions

T =
d

dx
+

↵

x
, T+ = � d

dx
+

↵

x
, x > 0,

with ↵,� 2 R (homogeneous of degree �1), which are formal adjoints to each
other. Then

T+T = � d2

dx2
+

↵2 + ↵

x2
,

and hence integrating by parts,

0 
Z 1

0
(Tf )(x)2 dx =

Z 1

0
f (x)(T+Tf )(x) dx

=

Z 1

0
[f 0(x)]2 dx +

�
↵2 + ↵

� Z 1

0

f (x)2

x2
dx , f 2 C1

0 ((0,1)),

choosing f real-valued w.l.o.g. Thus, one gets the Hardy-type inequality

Z 1

0
|f 0(x)|2 dx � ��↵2 + ↵

� Z 1

0

|f (x)|2
x2

dx ,

↵,� 2 R, f 2 C1
0 ((0,1)).
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A Warm Up: One Dimension

Hardy–Rellich-type Inequalities on (0,1) (contd.):

Maximizing w.r.t. ↵ yields Hardy’s classical inequality for the half-line

Z 1

0
|f 0(x)|2 dx � 1

4

Z 1

0

|f (x)|2
x2

dx , f 2 C1
0 ((0,1)).

It is well-known that 1/4 is optimal and the inequality is strict, i.e., equality
holds if and only if f ⌘ 0.
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A Warm Up: One Dimension

Hardy–Rellich-type Inequalities on (0,1) (contd.):

Of course, that’s a really old hat! Hardy, 1915, 1919, etc.

But, emboldened by this, we march on: Next, consider

T = � d2

dx2
+

↵

x

d

dx
+

�

x2
, T+ = � d2

dx2
� ↵

x

d

dx
+

↵+ �

x2
, x > 0,

with ↵,� 2 R (the di↵erential expressions are homogeneous of degree �2),
which are formal adjoints to each other. Then,

T+T =
d4

dx4
+

↵� ↵2 � 2�

x2
d2

dx2
+

2↵2 � 2↵+ 4�

x3
d

dx
+

3↵� + �2 � 6�

x4
,

and upon integrating by parts,

0 
Z 1

0
(Tf )(x)2 dx =

Z 1

0
f (x)(T+Tf )(x) dx

=

Z 1

0
[f 00(x)]2 dx � �

↵� ↵2 � 2�
� Z 1

0

[f 0(x)]2

x2
dx

+ �(3↵+ � � 6)

Z 1

0

f (x)2

x4
dx , f 2 C1

0 ((0,1)),
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A Warm Up: One Dimension

Hardy–Rellich-type Inequalities on (0,1) (contd.):

again choosing w.l.o.g. f real-valued.Thus,

Z 1

0
|f 00(x)|2 dx � �

↵� ↵2 � 2�
� Z 1

0

|f 0(x)|2
x2

dx

+ �(6� � � 3↵)

Z 1

0

|f (x)|2
x4

dx ,

f 2 C1
0 ((0,1)), ↵,� 2 R.

Choosing � =
�
↵� ↵2

�
/2 yields the Rellich-type inequality

Z 1

0
|f 00(x)|2 dx � ⇥

3↵� (19/4)↵2 + 2↵3 � (1/4)↵4
⇤ Z 1

0

|f (x)|2
x4

dx ,

f 2 C1
0 ((0,1)).
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A Warm Up: One Dimension

Hardy–Rellich-type Inequalities on (0,1) (contd.):

Maximizing w.r.t. ↵ yields Rellich’s classical inequality for the half-line

Z 1

0
|f 00(x)|2 dx � 9

16

Z 1

0

|f (x)|2
x4

dx , f 2 C1
0 ((0,1)).

Again, 9/16 is optimal and the inequality is strict, i.e., equality holds if and
only if f ⌘ 0.

History: Not entirely clear to us. Rellich’s book dates from 1969 and treats the
mult-dimensional case, but Birman had this in 1961 (translated in 1966),
however, he provides no references ......
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A Warm Up: One Dimension

Birman’s Sequence of Inequalities on (0,1):

Actually, the Rellich inequality is not the end, it’s just the beginning: Birman
presented in 1961 (almost in passing) the following sequence of inequalities (AMS
Transl. (2) 53, 23–80 (1966)):

Theorem 1.

Z 1

0
|f (n)(x)|2 dx � [(2n � 1)!!]2

22n

Z 1

0

|f (x)|2
x2n

dx , n 2 N, f 2 C1
0 ((0,1)).

An Extension [GLMW17] (apparently, new): The Birman inequalities work
with C1

0 ((0,1)) replaced by the space,

Hn([0,1)) =
�
f : [0,1)! C

�� f (j) 2 ACloc([0,1)); f (n) 2 L2((0,1));

f (j)(0) = 0, j = 0, . . . , (n � 1)
 

=
�
f : (0,1)! C

�� f (j) 2 ACloc((0,1)), j = 0, . . . , (n � 1);

x�nf , f (n) 2 L2((0,1))
 
.

This appears to be a new observation.
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A Warm Up: One Dimension

Birman’s Sequence of Inequalities (contd.):

Note. (i) Equality between the two spaces above requires a bit of work.

(ii) Hn([0,1)) does NOT equal the standard Sobolev space H(n)
0 ((0,1)).

Example. g(x) =

(
0, near x = 0,

x (2n�1)/2/ln(x), near 1,
with g j 2 ACloc([0,1)),

j = 0, . . . , n, then g 2 Hn([0,1)), but g (k) /2 L2((0,1)), k = 0, . . . , n � 1.

(iii) Hn([0,1)) is a Hilbert space with scalar product

(f , g)Hn([0,1)) =

Z 1

0
f (n)(x)g (n)(x) dx .

(The boundary conditions h(j)(0) = 0, j = 0, . . . , (n � 1), render the kernel of
dn/dxn trivial.)

A further possible Extension: Let p 2 (1,1), then

Z 1

0
|f (n)(x)|p dx �

Qn
k=1(kp � 1)p

ppn

Z 1

0

|f (x)|p
xpn

dx , n 2 N, f 2 C1
0 ((0,1)).
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A Warm Up: One Dimension

Birman’s Sequence of Inequalities on (0, b), b <1:

The Finite Interval Case (0, b), b 2 (0,1): Everything is local, thus, simply
replace (0,1) everywhere by (0, b), C1

0 ((0,1)) by C1
0 ((0, b)), etc.

One interesting di↵erence, though! Equivalence with the standard Sobolev

space H(n)
0 ((0, b)):

Hn,0([0, b]) =
�
f : [0, b]! C

�� f (j) 2 AC ([0, b]); f (n) 2 L2((0, b));

f (j)(0) = 0 = f (j)(b), j = 0, . . . , (n � 1)
 

=
�
f : (0, b]! C

�� f (j) 2 ACloc((0, b]), f
(j)(b) = 0, j = 0, . . . , (n � 1);

x�nf , f (n) 2 L2((0, b))
 

= H(n)
0 ((0, b)), b 2 (0,1),

as a consequence of the Friedrichs inequality,

��f (j)
��
L2((0,b))

 C
��f (n)

��
L2((0,b))

, f 2 Hn
0 ((0, b)), b 2 (0,1),

with C = C (j , n, b) 2 (0,1) independent of f 2 Hn
0 ((0, b)).
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A Warm Up: One Dimension

Birman’s Sequence of Ineq. on (0, b), b <1 (cont.):

Theorem 2 [GLMW17].

Let n 2 N, b 2 (0,1). Then the following items (i)–(iv) hold:

(i) For each n 2 N,
Hn([0, b]) = Hn

0 ((0, b))

as sets. In particular,

f 2 Hn([0, b]) implies f (j) 2 L2((0, b)), j = 0, 1, . . . , n.

In addition, the norms in Hn([0, b]) and Hn
0 ((0, b)) are equivalent.

(ii) The following hold:

(↵) Let f : [0, b]! C, with f (j) 2 AC ([0, b]), f (j)(0) = 0, j = 0, 1, . . . , n � 1, and
f (n) 2 L2((0, b)). (No b.c.’s at endpoint b !) Then,

Z b

0

��f (n)(x)
��2 dx � [(2n � 1)!!]2

22n

Z b

0

|f (x)|2
x2n

dx .
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A Warm Up: One Dimension

Birman’s Sequence of Ineq. on (0, b), b <1 (cont.):

Theorem 2 (contd.) [GLMW17].

(ii) (contd.)

(�) If f : [a, b]! C, with f (j) 2 AC ([0, b]), f (j)(b) = 0, j = 0, 1, . . . , n � 1, and
f (n) 2 L2((0, b)). Then,

Z b

0

��f (n)(x)
��2 dx � [(2n � 1)!!]2

22n

Z b

0

|f (x)|2
(b � x)2n

dx .

(�) Introducing the distance of x 2 (0, b) to the boundary {0, b} of (0, b) by

d(x) = min{x , |b � x |}, x 2 (0, b), one has

Z b

0

��f (n)(x)
��2 dx � [(2n � 1)!!]2

22n

Z b

0

|f (x)|2
d(x)2n

dx , f 2 Hn
0 ((0, b)).

In all cases (↵)–(�), if f 6⌘ 0, the above inequalities are strict.

(iii) The constant [(2n � 1)!!]2/22n is sharp.
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A Warm Up: One Dimension

The Vector-Valued Case:

Extensions to the vector-valued case: Consider a complex, separable Hilbert
space H, the inner product in L2((a, b);H), in obvious notation, then reads

(f , g)L2((a,b);H) =

Z b

a

(f (x), g(x))H dx , f , g 2 L2((a, b);H).

In other words, L2((a, b);H) can be identified with the constant fiber direct

integral of Hilbert spaces, L2((a, b);H) ' R �
(a,b) H dx , and similarly one introduces

Hn([0,1);H).

Theorem 3 [GLMW17].

For 0 6= f 2 Hn([0,1);H), one has (with [(2n � 1)!!]2/22n being sharp)

Z 1

0

��f (n)(x)
��2
H dx >

[(2n � 1)!!]2

22n

Z 1

0

kf (x)k2H
x2n

dx , n 2 N.

Note. The case n = 1 played a role in spectral and scattering theory for
Schrödinger operators in Rd (Agmon, Kuroda) with H = L2(Sd�1; dd�1!),
d 2 N, d � 2.
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A Warm Up: One Dimension

The Vector-Valued Case (contd.): b 2 (0,1)

Consider the finite interval case (0, b), b 2 (0,1) and introduce (with n 2 N),

Hn([0, b];H) :=
�
f : [0, b]! H �� f (n) 2 L2((0, b);H); f (j) 2 AC ([0, b];H);

f (j)(0) = 0 = f (j)(b), j = 0, 1, . . . , n � 1
 
,

and the standard H-valued Sobolev spaces,

Hn((0, b);H) =
�
f : [0, b]! H �� f (j) 2 AC ([0, b];H), j = 0, 1, . . . , n � 1;

f (k) 2 L2((0, b);H), k = 0, 1, . . . , n
 
,

Hn
0 ((0, b);H) =

�
f 2 Hn((0, b);H)

�� f (j)(0) = 0 = f (j)(b), j = 0, 1, . . . , n � 1
 
.

Again, the vector-valued Friedrichs inequality

kf kL2((0,b);H)  bkf 0kL2((0,b);H), f 2 H1([0, b];H)

yields H1([0, b];H) = H1
0 ((0, b);H), and upon iteration,

Hn([0, b];H) = Hn
0 ((0, b);H), n 2 N.
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A Warm Up: One Dimension

The Vector-Valued Case (contd.): b 2 (0,1)

Theorem 4 [GLMW17].

Let n 2 N, b 2 (0,1). Then

(i) For each n 2 N,
Hn([0, b];H) = Hn

0 ((0, b);H)

as sets. In particular,

f 2 Hn([0, b];H) implies f (j) 2 L2((0, b);H), j = 0, 1, . . . , n.

In addition, the norms in Hn([0, b];H) and Hn
0 ((0, b);H) are equivalent.

(ii) Recalling d(x) = min{x , |b � x |}, x 2 (0, b), one has

Z b

0

��f (n)(x)
��2
H dx � [(2n � 1)!!]2

22n

Z b

0

kf (x)k2H
d(x)2n

dx , f 2 Hn
0 ((0, b)).

If f 6⌘ 0, the above inequality is strict.

(iii) The constant [(2n � 1)!!]2/22n is sharp.

Much more could be done, but on to multi-dimensions.
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The Multi-Dimensional Case

A Fundamental Inequality:

At first we focus on one point singularity, but eventually illustrate how any

finite number, even countably infinitely many, can be handled in applications.

Theorem 5 (G., Littlejohn, 2016).

Let ↵,� 2 R, and f 2 C1
0 (Rn\{0}), n 2 N, n � 2. Then,

Z

Rn

|(�f )(x)|2 dnx � [(n � 4)↵� 2�]

Z

Rn

|x |�2|(rf )(x)|2 dnx

� ↵(↵� 4)

Z

Rn

|x |�4|x · (rf )(x)|2 dnx

+ �[(n � 4)(↵� 2)� �]

Z

Rn

|x |�4|f (x)|2 dnx .

In addition, if either ↵  0 or ↵ � 4, then,
Z

Rn

|(�f )(x)|2 dnx � [↵(n � ↵)� 2�]

Z

Rn

|x |�2|(rf )(x)|2 dnx

+ �[(n � 4)(↵� 2)� �]

Z

Rn

|x |�4|f (x)|2 dnx .
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The Multi-Dimensional Case

A Fundamental Inequality (contd.):

Note. By locality, these inequalities naturally extend to the case where Rn is
replaced by an arbitrary open set ⌦ ⇢ Rn for functions f 2 C1

0 (⌦\{0}) (without
changing the constants in these inequalities).

Sketch of Proof of Theorem 5. Consider, with ↵,� 2 R,

T↵,� := ��+ ↵|x |�2x ·r+ �|x |�2, x 2 Rn\{0},
(homogeneous of degree �2) and its formal adjoint, denoted by T+

↵,� ,

T+
↵,� := ��� ↵|x |�2x ·r+ [� � ↵(n � 2)]|x |�2, x 2 Rn\{0}.

Then, for f 2 C1
0 (Rn\{0}),

(T+
↵,�T↵,�f )(x) = (�2f )(x) + [(n � 4)↵� 2�]|x |�2(�f )(x)

+ ↵(4� ↵)|x |�4
nX

j,k=1

xjxk fxj ,xk (x)

+
⇥� (n � 3)↵2 + 2(n � 2)↵+ 4�

⇤|x |�4x · (rf )(x)
+
⇥
�2 + 2(n � 4)� � (n � 4)↵�

⇤|x |�4f (x).
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The Multi-Dimensional Case

A Fundamental Inequality (contd.):

Again, assuming f 2 C1
0 (Rn\{0}) to be real-valued, integrating by parts

(observing the support properties of f , which results in vanishing surface terms),
results in (not without some tears involved ......)

0 
Z

Rn

[(T↵,�f )(x)]
2 dnx =

Z

Rn

f (x)(T+
↵,�T↵,�f )(x) d

nx

=

Z

Rn

[(�f )(x)]2 dnx + [(n � 4)↵� 2�]

Z

Rn

Z

Rn

|x |�2f (x)(�f )(x) dnx

+ ↵(↵� 4)
nX

j,k=1

Z

Rn

|x |�4f (x)xjxk fxj ,xk (x) d
nx

+
⇥� (n � 3)↵2 + 2(n � 2)↵+ 4�

⇤ Z

Rn

|x |�4f (x)[x · (rf )(x)] dnx

+
⇥
�2 + 2(n � 4)� � (n � 4)↵�

⇤ Z

Rn

|x |�4f (x)2 dnx .
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The Multi-Dimensional Case

A Fundamental Inequality (contd.):

To simplify matters we make two observations. First, a standard integration by
parts (again observing the support properties of f ) yields

Z

Rn

|x |�2f (x)(�f )(x) dnx = 2

Z

Rn

|x |�4f (x)(x · (rf )(x) dnx

�
Z

Rn

|x |�2|(rf )(x)|2 dnx .

Similarly, one confirms that

nX

j,k=1

Z

Rn

xjxk f (x)fxj ,xk (x) = �(n � 3)

Z

Rn

|x |�4f (x)[x · (rf )(x)] dnx

�
Z

Rn

|x |�4[x · (rf )(x)]2 dnx .

This yields the 1st inequality in the theorem.
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The Multi-Dimensional Case

A Fundamental Inequality (contd.):

Since by Cauchy’s inequality,

�
Z

Rn

|x |�4[x · (rf )(x)]2 dnx � �
Z

Rn

|x |�2|(rf )(x)|2 dnx ,

one concludes that as long as ↵(↵� 4) � 0, that is, as long as either ↵  0 or
↵ � 4, one arrives at the 2nd inequality in the theorem. ⇤

In principle, a “nice” calculus exercise!

Believe it or not, this is actually useful as we shall see next:
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The Multi-Dimensional Case

Consequences of the Fundamental Inequality:

Corollary 6 (Rellich’s Inequality).

Let n 2 N, n � 5, and f 2 C1
0 (Rn\{0}). Then,

Z

Rn

|(�f )(x)|2 dnx �

n(n � 4)

4

�2 Z

Rn

|x |�4|f (x)|2 dnx .

The constant [n(n � 4)/4]2 is known to be optimal.

Sketch of Proof. Choosing � = ↵(n � ↵)/2 in the 2nd inequality in Theorem 5
results in Z

Rn

|(�f )(x)|2 dnx � Gn(↵)

Z

Rn

|x |�4|f (x)|2 dnx ,

with
Gn(↵) = ↵(n � ↵){(n � 4)(↵� 2)� [↵(n � ↵)/2]}/2.

Maximizing Gn(↵) with respect to ↵ yields Rellich’s inequality. ⇤
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The Multi-Dimensional Case

Consequences of the Fundamental Inequ. (contd.):

Corollary 7

Let n 2 N and f 2 C1
0 (Rn\{0}). Then,

Z

Rn

|(�f )(x)|2 dnx � n2

4

Z

Rn

|x |�2|(rf )(x)|2 dnx , n � 8,

and
Z

Rn

|(�f )(x)|2 dnx � 4(n � 4)

Z

Rn

|x |�2|(rf )(x)|2 dnx , 5  n  7.

In addition,

Z

Rn

|(�f )(x)|2 dnx � n2

4

Z

Rn

|x |�4|x · (rf )(x)|2 dnx , n � 2.

Note. The constant 4(n � 4) for n = 5, 6, 7 should be n2/4, so that seems to be
one mysterious instance where this method may not yield an optimal constant.
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The Multi-Dimensional Case

Consequences of the Fundamental Inequ. (contd.):

Sketch of Proof of Corollary 7. Choosing � = 0 in the 2nd inequality in
Theorem 5 yields

Z

Rn

|(�f )(x)|2 dnx � ↵(n � ↵)

Z

Rn

|x |�2|(rf )(x)|2 dnx .

Maximizing Fn(↵) = ↵(n � ↵) with respect to ↵ yields a maximum at ↵1 = n/2,
and subjecting it to the constraint ↵ � 4 proves the 1st inequality of Corollary 7.

Choosing ↵ = 4, � = 0 in the 1st inequality in Theorem 5 yields the 2nd
inequality of Corollary 7.
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The Multi-Dimensional Case

Consequences of the Fundamental Inequ. (contd.):

The choice � = (n � 4)(↵� 2) in the 1st inequality in Theorem 5 results in

Z

Rn

|(�f )(x)|2 dnx � (n � 4)(4� ↵)

Z

Rn

|x |�2|(rf )(x)|2 dnx

� ↵(↵� 4)

Z

Rn

|x |�4|x · (rf )(x)|2 dnx .

For n � 2 and (4� n) < ↵ < 4, applying Cauchy’s inequality to the 1st term on
the right-hand side yields

Z

Rn

|(�f )(x)|2 dnx � Kn(↵)

Z

Rn

|x |�4|x · (rf )(x)|2 dnx ,

where Kn(↵) = �(↵+ n � 4)(↵� 4). Maximizing Kn subject to the constraint
(4� n) < ↵ < 4 yields the 3rd inequality of Corollary 7. ⇤
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The Multi-Dimensional Case

Other Consequences: Schmincke’s Inequality

Our method recovers (actually, extends) Schmincke’s one-parameter family of
inequalities from 1972:

Corollary 8 (Schmincke’s 1972 Inequality).

Let n 2 N, n � 5, and f 2 C1
0 (Rn\{0}). Then,

Z

Rn

|(�f )(x)|2 dnx � �s
Z

Rn

|x |�2|(rf )(x)|2 dnx

+ [(n � 4)/4]2
�
4s + n2

� Z

Rn

|x |�4|f (x)|2 dnx ,

s 2 ⇥� 2�1n(n � 4),1�
.

Sketch of Proof. Choose � = 2�1(n � 4)[↵� 2� 4�1(n � 4)], and the
introduction of the new variable s = s(↵) = ↵2 � 4↵� 2�1n(n � 4), in the
fundamental two-parameter inequality in Theorem 5. ⇤

Note. Particular choices of s reproduce Rellich’s inequality (Corollary 6) and also
some of the inequalities in Corollary 7 as special cases.

Fritz Gesztesy (Baylor) Hardy-Rellich-Type Inequalities September 28, 2017 27 / 41



The Multi-Dimensional Case

Back to Hardy’s Inequality and Some Refinements:

I first started to look into factorizations well over 30 years ago: Let n � 3 and
consider

T↵ := r+ ↵|x |�2x , x 2 Rn\{0},
with formal adjoint

T+
↵ = �div( · ) + ↵|x |�2x ·, x 2 Rn\{0},

such that (e.g., on C1
0 (Rn\{0})-functions),

T+
↵ T↵ = ��+ ↵(↵+ 2� n)|x |�2.

Repeating earlier steps and optimizing w.r.t. ↵ readily yields Hardy’s classical

inequality

Z

Rn

|(rf )(x)|2 dnx � (n � 2)2

4

Z

Rn

|x |�2|f (x)|2 dnx , f 2 C1
0 (Rn\{0}), n � 3.

The constant (n � 2)2/4 is optimal.
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The Multi-Dimensional Case

Some Refinements Hardy’s Inequality:

Similarly, assuming n � 3 and introducing the refinement (radial derivative),

eT↵ :=
�|x |�1x

� ·r+ ↵|x |�1, x 2 Rn\{0},

with formal adjoint,

� eT↵

�+
= ��|x |�1x

� ·r+ (↵� n + 1)|x |�1, x 2 Rn\{0},

one computes (e.g., on C1
0 (Rn\{0})-functions),

� eT↵

�+ eT↵ = �|x |�2
nX

j,k=1

xjxk@xj@xk � (n � 1)|x |�2[x · (rf )(x)]

+ ↵(↵+ 2� n)|x |�2, x 2 Rn\{0}.

Proceeding as before yields
Z

Rn

��⇥|x |�1x ·rf ](x)��2 dnx � ↵[(n�2)�↵]
Z

Rn

|x |�2|f (x)|2 dnx , f 2 C1
0 (Rn\{0}).
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The Multi-Dimensional Case

Some Refinements Hardy’s Inequality (contd.):

Maximizing ↵[(n � 2)� ↵] with respect to ↵ yields the improved/refined Hardy

inequality involving the radial derivative, @/@r = |x |�1x ·r,
Z

Rn

��⇥|x |�1x ·rf ](x)��2 dnx � (n � 2)2

4

Z

Rn

|x |�2|f (x)|2 dnx ,

f 2 C1
0 (Rn\{0}), n � 3.

The constant (n � 2)2/4 is optimal.
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The Multi-Dimensional Case

Logarithmic Refinements of Hardy’s Inequality:

As an example we just consider the Hardy case: For � > 0, x 2 Rn, n 2 N, n � 2,
|x | < �, introduce iterated logarithms of the form

(�ln(|x |/�))0 = 1,

(�ln(|x |/�))1 = (�ln(|x |/�)),
(�ln(|x |/�))k+1 = ln((�ln(|x |/�))k), k 2 N,

and introduce

Ty = r+ 2�1|x � y |�2

⇢
(n � 2) +

mX

j=1

jY

k=1

[(�ln(|x � y |/�))k ]�1

�
(x � y),

0 < |x | < r , r < �, m 2 N, n 2 N, n � 2.
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The Multi-Dimensional Case

Logarithmic Refinements of Hardy’s Inequ. (contd.):

With T+
y the formal adjoint of Ty , one obtains for f 2 C1

0 (Bn(y ; r)\{y}) (with
Bn(x0; r0) the open ball in Rn with center x0 2 Rn and radius r0 > 0)

(T+
y Ty f )(x) = (��f )(x)� 4�1|x � y |�2

⇢
(n � 2)2

+
mX

j=1

jX

k=1

[(�ln(|x � y |/�))k ]�2f (x)

�
f (x), m 2 N, n 2 N, n � 2.

Thus,
Z

B(y ;r)
|(rf )(x)|2 dnx � 1

4

Z

B(y ;r)
|x � y |�2

⇢
(n � 2)2

+
mX

j=1

jY

k=1

[(�ln(|x � y |/�))k ]�2

�
|f (x)|2 dnx ,

0 < r < �, f 2 C1
0 (B(y ; r)\{y}), m 2 N [ {0}, n 2 N, n � 2.
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The Multi-Dimensional Case

Logarithmic Refinements of Hardy’s Inequ. (contd.):

Explicitly,

Z

B(y ;r)
|(rf )(x)|2 dnx �

Z

B(y ;r)

⇢
(n � 2)2

4|x � y |2 +
1

4|x � y |2[(�ln(|x � y |/�))]2

+
1

4|x � y |2[(�ln(|x � y |/�))]2[ln(�ln(|x � y |/�))]2 + · · · · · ·
�
|f (x)|2 dnx ,

0 < r < �, f 2 C1
0 (B(y ; r)\{y}), m 2 N [ {0}, n 2 N, n � 2.

Again, this extends to arbitrary open bounded sets ⌦ ⇢ Rn as long as � is chosen
su�ciently large (e.g., larger than the diameter of ⌦). The constants (n � 2)2/4
and 1/4 are optimal.
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The Multi-Dimensional Case

Applications to Lower Semiboundedness and Form

Boundedness:

In their simplest form, these inequalities focus on Rn\{0} or ⌦\{x0}, ⌦ ⇢ Rn

open and bounded, x0 2 ⌦, etc., and yield su�cient conditions for
semiboundedness from below for L2-realizations of strongly singular di↵erential
expressions of the form

(��)m + V (x), m 2 N, x 2 Rn\{0} (or x 2 ⌦\{x0}).

However, this represents just the tip of the iceberg and much more is possible: As
long as there are countably many singularities, all uniformly separated from each
other by some fixed distance "0 > 0 (e.g., the singularities could define a lattice),
one can localize around each singularity and thus obtain semiboundedness (and
self-adjointness) for the entire system with countably many such singularities.
This idea of localizing, going back to J. D. Morgan, JOT 1, 109–115 (1979), has
recently again been used in

[GMNT16]: F.G., M. Mitrea, I. Nenciu, and G. Teschl, Adv. Math. 301,
1022–1061 (2016).
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The Multi-Dimensional Case

Applications to Lower Semiboundedness and Form

Boundedness (contd.):

We will aim at (��)2 +W , where W has countably many strong singularities.

Theorem 9 ([GMNT16], abstracting Morgan, JOT 1, 109–115 (1979))

Suppose that T , W are self-adjoint operators in H such that
dom

�|T |1/2� ✓ dom
�|W |1/2�, and let c , d 2 (0,1), e 2 [0,1). Moreover,

suppose �j 2 B(H), j 2 J, J 2 N an index set, leave dom
�|T |1/2� invariant, i.e.,

�j dom
�|T |1/2� ✓ dom

�|T |1/2�, j 2 J, and satisfy conditions (i)–(iii):

(i)
P

j2J �
⇤
j �j  IH.

(ii)
P

j2J �
⇤
j |W |�j > c�1|W | on dom

�|T |1/2�.
(iii)

P
j2J k|T |1/2�j f k2H 6 dk|T |1/2f k2H + ekf k2H, f 2 dom

�|T |1/2�.
Then,

��|W |1/2�j f
��2
H 6 a

��|T |1/2�j f
��2
H + bk�j f k2H, f 2 dom(|T |1/2), j 2 J,

implies
��|W |1/2f ��2H 6 a c d

��|T |1/2f ��2H + [a c e + b c]kf k2H, f 2 dom(|T |1/2).
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The Multi-Dimensional Case

Applications to Lower Semiboundedness and Form

Boundedness (contd.):

Thus, the key for applications would be to have c and d arbitrarily close to 1 such
that if a < 1, also acd < 1.
If W is local and �j represents the operator of multiplication with bump

functions �j , j 2 J ✓ N, such that �j , j 2 J is a family of smooth, real-valued
functions defined on Rn satisfying that for each x 2 Rn, there exists an open
neighborhood Ux ⇢ Rn of x such that there exist only finitely many indices k 2 J
with supp (�k) \ Ux 6= ; and �k |Ux 6= 0, as well as

P
j2J �j(x)2 = 1, x 2 Rn

(the sum over j 2 J being finite). Then �j and W commute and hence

X

j2J

�⇤
j �j = IH and

X

j2J

�⇤
j |W |�j = |W | on dom

�|T |1/2�

yield condition (i) and also (ii) with c = 1. (So that takes care of c).

What about d ? We’ll show next that for all " > 0, one can choose d = 1 + ":
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The Multi-Dimensional Case

Applications to Lower Semiboundedness and Form

Boundedness (contd.):

Example. m = 2, T = (��)2, dom(T ) = H4(Rn) in L2(Rn), n � 5, and assume
that dom

�|T |1/2� ✓ dom
�|W |1/2� (relative form boundedness). Then for

arbitrary " > 0, also condition (iii) holds with d = 1 + " as long as

X

j2J

�j(·)2 = 1,

����
X

j2J

|r�j(·)|2
����
L1(Rn)

<1,

����
X

j2J

|(��j)(·)|2
����
L1(Rn)

<1.

To verify this, one observes that for all " > 0,

X

j2J

��|T |1/2(�j f )
��2
L2(Rn)

=
X

j2J

Z

Rn

|�(�j f )(x)|2 dnx

 (1 + ")

Z

Rn

|(�f )(x)|2 dnx + C"kf k2L2(Rn),

thus, d = 1 + " in condition (iii).
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The Multi-Dimensional Case

Applications to Lower Semiboundedness and Form

Boundedness (contd.):

This follows from the elementary estimate (for some constant C" 2 (0,1)):

X

j2J

Z

Rn

|�(�j f )(x)|2 dnx 
Z

Rn

|(�f )(x)|2 dnx

✓
 !

X

j2J

�j(·)2 = 1

◆

+

����
X

j2J

|(��j)(·)|2
����
L1(Rn)

kf k2L2(Rn)

+ 4

����
X

j2J

|(��j)(·)||(r�j)(·)|
����
L1(Rn)

Z

Rn

|(rf )(x)||f (x)| dnx

+ 2

����
X

j2J

|(��j)(·)||�j(·)|
����
L1(Rn)

Z

Rn

|(�f )(x)||f (x)| dnx

+ 4

����
X

j2J

|�j(·)||(r�j)(·)|
����
L1(Rn)

Z

Rn

|(rf )(x)||(�f )(x)| dnx

 (1 + ")

Z

Rn

|(�f )(x)|2 dnx + C" kf k2L2(Rn), f 2 H2(Rn).
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The Multi-Dimensional Case

Applications to Lower Semiboundedness and Form

Boundedness (contd.):

Strongly singular potentials W that are covered by Theorem 9 are, e.g., of the
following form: Let J ✓ N be an index set, and {xj}j2J ⇢ Rn, n 2 N, n � 5, be a
set of points such that

inf j,j02J
j 6=j0

|xj � xj0 | > 0 (e.g., a lattice of points ....).

Let � be a nonnegative smooth function which equals 1 in Bn(0; 1/2) and
vanishes outside Bn(0; 1). Let

P
j2J �(x � xj)2 > 1/2, x 2 Rn, and set

�j(x) = �(x � xj)
⇥P

j02J �(x � xj0)2
⇤�1/2

, x 2 Rn, j 2 J, such thatP
j2J �j(x)2 = 1, x 2 Rn. In addition, let �j 2 R, j 2 J, �, � 2 (0,1) with

|�j |  � <
⇥
n(n � 4)/4

⇤2
, j 2 J (the Rellich constant ....),

and consider

W0(x) =
X

j2J

�j |x � xj |�4 e��|x�xj |, x 2 Rn\{xj}j2J .

Then by Rellich’s inequality in Rn, n � 5, W0 is form bounded with respect to
T = (��)2 with form bound strictly less than one.
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An Outlook at Current Work

Some Extensions:

Current joint work with Michael Pang focuses on “radial extensions”: Recalling
the improved/refined Hardy inequality involving the radial derivative,�|x |�1x ·rf �(x) := @f /@r(x), if f 2 C1

0 (Rn\{0}), n � 3, then

Z

Rn

��(rf )(x)��2 dnx �
Z

Rn

����
@f

@r
(x)

����
2

dnx

| {z }
improvement

� (n � 2)2

4

Z

Rn

|x |�2|f (x)|2 dnx .

Thus, we conjectured, and then proved, that also the Rellich inequality (in fact,
the entire sequence of higher-order Hardy–Rellich inequalities) extends in this
radial context:
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An Outlook at Current Work

Some Extensions:

E.g., if f 2 C1
0 (Rn\{0}), n 2 N, n � 5, then,

Z

Rn

|(�f )(x)|2 dnx �
Z

Rn

����
@2f

@r2
(x) +

n � 1

|x |
@f

@r
(x)

����
2

dnx

| {z }
improvement

�

n(n � 4)

4

�2 Z

Rn

|x |�4|f (x)|2 dnx .

Indeed, Machihara, Ozawa, Wadade, Math. Z. 286, 1367–1373 (2017), just
published this. Still, we have a di↵erent proof and further extensions ......
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