Comprehensive Exam – Analysis (January 2011)

There are 5 problems, each worth 20 points. Please write only on one side of the page and start each problem on a new page.

1. (a) Let $\{a_n\}$ be a sequence of real numbers such that $|a_{n+1} - a_n| < 3^{-n}$ for all $n \in \mathbb{N}$. Prove that $\{a_n\}$ is a convergent sequence.

(b) Let $\{a_n\}$ and $\{b_n\}$ be real sequences such that $|a_n - b_n| \leq 1/n$ for all $n \in \mathbb{N}$, and $a_n \to L$. Then prove that $b_n \to L$.

- 2. A sequence of real-valued functions $\{f_n\}, n \in \mathbb{N}$ is defined by $f_n(x) = \frac{x}{1+nx^2}, x \in \mathbb{R}$.
- (a) Show that $f_n \to 0$ uniformly on \mathbb{R} .
- (b) Show that the sequence of derivatives $\{f'_n\}$ does not converge uniformly on \mathbb{R} .
- 3. (a) Compute the sum of the power series $\sum_{n=0}^{\infty} (n+1)x^n$. Justify all necessary steps.

(b) Prove that the series $\sum_{k=1}^{\infty} \frac{x}{k(x+k)}$ represents a continuous function f on [0, a] for any a > 0. Also, show that $f(n) = \sum_{k=1}^{n} \frac{1}{k}$, $n \in \mathbb{N}$.

4. (a) Let (X, d) be a metric space. Show that $\delta(x, y) = \frac{d(x, y)}{1 + d(x, y)}$, $\forall x, y \in X$, defines a metric on X, and that every subset $E \subset X$ is bounded with respect to the metric δ .

(b) Let (X, d) be a metric space and let E be a nonempty subset of X. Define the distance of $x \in X$ to E by $\rho_E(x) := \inf_{y \in E} d(x, y)$. Prove that ρ_E is uniformly continuous on X. (Hint: Show that $|\rho_E(x) - \rho_E(x')| \le d(x, x'), \forall x, x' \in X$.)

5. (a) A function is defined by f(x) = x if $x \in \mathbb{Q}$ and f(x) = 0, otherwise. Prove or disprove that f is Riemann integrable on [0, 1].

(b) Suppose the first *n* derivatives of the functions *f* and *g* are continuous on an interval containing x = 0. If $f^{(k)}(0) = g^{(k)}(0) = 0$, $0 \le k < n$, and $g^{(n)}(0) \ne 0$, then use Taylor's theorem with remainder to prove that

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{f^{(n)}(0)}{g^{(n)}(0)} \,.$$

/ \