Comprehensive Exam - Analysis (January 2011)

There are 5 problems, each worth 20 points. Please write only on one side of the page and start each problem on a new page.

1. (a) Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that $\left|a_{n+1}-a_{n}\right|<3^{-n}$ for all $n \in \mathbb{N}$. Prove that $\left\{a_{n}\right\}$ is a convergent sequence.
(b) Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be real sequences such that $\left|a_{n}-b_{n}\right| \leq 1 / n$ for all $n \in \mathbb{N}$, and $a_{n} \rightarrow L$. Then prove that $b_{n} \rightarrow L$.
2. A sequence of real-valued functions $\left\{f_{n}\right\}, n \in \mathbb{N}$ is defined by $f_{n}(x)=\frac{x}{1+n x^{2}}, \quad x \in \mathbb{R}$.
(a) Show that $f_{n} \rightarrow 0$ uniformly on \mathbb{R}.
(b) Show that the sequence of derivatives $\left\{f_{n}^{\prime}\right\}$ does not converge uniformly on \mathbb{R}.
3. (a) Compute the sum of the power series $\sum_{n=0}^{\infty}(n+1) x^{n}$. Justify all necessary steps.
(b) Prove that the series $\sum_{k=1}^{\infty} \frac{x}{k(x+k)}$ represents a continuous function f on $[0, a]$ for any $a>0$. Also, show that $f(n)=\sum_{k=1}^{n} \frac{1}{k}, n \in \mathbb{N}$.
4. (a) Let (X, d) be a metric space. Show that $\delta(x, y)=\frac{d(x, y)}{1+d(x, y)}, \forall x, y \in X$, defines a metric on X, and that every subset $E \subset X$ is bounded with respect to the metric δ.
(b) Let (X, d) be a metric space and let E be a nonempty subset of X. Define the distance of $x \in X$ to E by $\rho_{E}(x):=\inf _{y \in E} d(x, y)$. Prove that ρ_{E} is uniformly continuous on X.
(Hint: Show that $\left|\rho_{E}(x)-\rho_{E}\left(x^{\prime}\right)\right| \leq d\left(x, x^{\prime}\right), \forall x, x^{\prime} \in X$.)
5. (a) A function is defined by $f(x)=x$ if $x \in \mathbb{Q}$ and $f(x)=0$, otherwise. Prove or disprove that f is Riemann integrable on $[0,1]$.
(b) Suppose the first n derivatives of the functions f and g are continuous on an interval containing $x=0$. If $f^{(k)}(0)=g^{(k)}(0)=0,0 \leq k<n$, and $g^{(n)}(0) \neq 0$, then use Taylor's theorem with remainder to prove that

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{f^{(n)}(0)}{g^{(n)}(0)}
$$

