Comprehensive Exam – Analysis (August 2014)

There are 5 problems, each worth 20 points. Please write only on one side of the page and start each problem on a new page.

1. For a real sequence $\{a_n\}$ define $\sigma_n := \frac{a_1 + a_2 + \dots + a_n}{n}$ and $d_n := a_{n+1} - a_n$ for $n \ge 1$. (a) Show that $\frac{1}{n} \sum_{k=1}^{n-1} k d_k = a_n - \sigma_n$ for n > 1.

(b) If $\lim_{n \to \infty} nd_n = 0^{n-1}$ and the sequence $\{\sigma_n\}$ converges, then prove that the sequence $\{a_n\}$ converges and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sigma_n$.

2. (a) Let $f : [a, b] \to \mathbb{R}$ be a continuous function and let x_1, x_2, \ldots, x_n be points in [a, b]. Prove that there is a point $z \in [a, b]$ such that $f(z) = \frac{f(x_1) + f(x_2) + \cdots + f(x_n)}{n}$. (b) Let $\{f_n : \mathbb{R} \to \mathbb{R}\}$ be a sequence of functions defined by

$$f_n(x) = \frac{1 - |x|^n}{1 + |x|^n}, \qquad x \in \mathbb{R}.$$

Find the function $f : \mathbb{R} \to \mathbb{R}$ such that $f_n \to f$ pointwise. Prove that the convergence is *not* uniform.

3. (a) Let $f: [0,1] \to \mathbb{R}$ defined as f(x) = x if x is rational, and f(x) = -x if x is irrational. Prove that f is not Riemann integrable on [0,1].

(b) A subset S of the Euclidian space \mathbb{R}^n is called a *convex* set if $tp + (1-t)q \in S$ whenever $p = (p_1, p_2, \ldots, p_n), q = (q_1, q_2, \ldots, q_n) \in S$ and 0 < t < 1. Show that an open ball in \mathbb{R}^n is convex.

4. (a) Give the precise definition of a *sequentially compact* metric space.

(b) Prove that a nonempty sequentially compact subset of \mathbb{R} has a smallest element and a largest element.

(c) If $A \subset (0, \infty)$ is closed and non-empty, then prove that A has a smallest element.

5. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a continuously differentiable function with f(0,0) = 0. Suppose for some a > 0, $\langle \nabla f(\mathbf{x}), \mathbf{x} \rangle > 0$ for all $\mathbf{x} \in \mathbb{R}^2$ such that $0 < ||\mathbf{x}|| < a$.

- (a) Prove that $f(\mathbf{x}) > 0$ for all $0 < ||\mathbf{x}|| < a$.
- (b) Prove that $\nabla f(0,0) = 0$.

(c) Show that the function $f(x, y) = x^2 + y^2 + \sin xy$ satisfies the hypothesis of this problem for all a > 0.