Comprehensive Exam - Analysis (June 2013)

There are 5 problems, each worth 20 points. Please write only on one side of the page and start each problem on a new page.

1. (a) Suppose that $a_{n} \geq 0, b_{n} \geq 0$ are two non-negative sequences and that there exists $L>0$ such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$. Then show that the series $\sum_{n} a_{n}$ and $\sum_{n} b_{n}$ either both converge or both diverge.
(b) Determine whether the following series converge. Justify your answers.
(i) $\sum_{k=1}^{\infty} \frac{k+3}{7 k^{2}+8}$,
(ii) $\sum_{k=1}^{\infty} \frac{1}{k} \sin \left(\frac{1}{k}\right)$.
2. (a) Suppose the series $\sum_{n} a_{n}$ converges absolutely. Then show that $\sum_{n=1}^{\infty} a_{n} \cos (n x)$ converges uniformly for all $x \in \mathbb{R}$.
(b) Suppose that $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on the interval $[a-\delta, a+\delta]$ for some $\delta>0$, and $\lim _{x \rightarrow a} f_{n}(x)=c_{n}$. Prove that

$$
\text { (i) } \sum_{n=1}^{\infty} c_{n} \text { converges } \quad \text { (ii) } \lim _{x \rightarrow a} \sum_{n=1}^{\infty} f_{n}(x)=\sum_{n=1}^{\infty} c_{n} \text {. }
$$

3. (a) Let $f(x)$ be a function defined on $[0, \infty)$ such that $f(0)=0$ and the derivative $f^{\prime}(x)$ is strictly increasing on $(0, \infty)$. Show that $g(x)=x^{-1} f(x)$ is strictly increasing on $(0, \infty)$.
(b) Let $f(x)$ be a continuous function on $[0, \infty)$ such that $\lim _{x \rightarrow \infty} f(x)=0$. Then show that

$$
\lim _{x \rightarrow \infty} e^{-x} \int_{0}^{x} f(t) e^{t} d t=0
$$

4. (a) For metric spaces X, Y with metrics d_{X}, d_{Y}, let $X \times Y$ denote the set of ordered pairs (x, y), with $x \in X$ and $y \in Y$. Show that $X \times Y$ is a metric space with metric

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left(d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right)
$$

(b) Suppose S_{1} and S_{2} are metric spaces. If $f: S_{1} \rightarrow S_{2}$ is a continuous function, and $K \subset S_{1}$ is compact, then prove that the image $f(K)$ is a compact subset of S_{2}.
5. (a) A metric space X with metric d is called sequentially compact if every sequence $\left\{x_{n}\right\}$ from X has a convergent subsequence. If K is a closed subset of a sequentially compact metric space X, then prove that K is sequentially compact.
(b) Suppose that $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ has partial derivatives at each $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$. Define

$$
\nabla f:=\left(\begin{array}{c}
\partial f / \partial x_{1} \\
\partial f / \partial x_{2} \\
\vdots \\
\partial f / \partial x_{N}
\end{array}\right) .
$$

Show that if f has a local minimum at $\mathbf{x}_{0} \in \mathbb{R}^{N}$, then $\nabla f\left(\mathbf{x}_{0}\right)=0$.

