Comprehensive Exam - Analysis (June 2012)

There are 5 problems, each worth 20 points. Please write only on one side of the page and start each problem on a new page.

1. (a) A sequence of real numbers $\left\{a_{n}\right\}$ is defined by $a_{n+1}=\sqrt{3 a_{n}+4}, \quad a_{1}=0$.
(i) Prove that $a_{n} \leq 4$ for all $n \geq 1$.
(ii) Prove that $\left\{a_{n}\right\}$ is a convergent sequence.
(iii) Determine an exact numerical expression for $\lim _{n \rightarrow \infty} a_{n}$. Explain each step of your reasoning.
(b) Let $\left\{a_{k}\right\}$ be a real sequence. If $\lim _{k \rightarrow \infty} a_{k}=a$, show that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{k}=a
$$

2. (a) Consider the metric space $X=C([0,1], \mathbb{R})$ that consists of all continuous functions with the uniform metric: $d(f, g)=\sup _{x \in[0,1]}|f(x)-g(x)|$. Let $A \subset X$ defined as follows:

$$
A=\left\{f \in X \mid \int_{0}^{1} f(x) \mathrm{d} x=0\right\} .
$$

Prove that A is a closed subset of X.
(b) Suppose $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two Cauchy sequences in a metric space X. Show that the sequence $a_{n}=d\left(x_{n}, y_{n}\right)$ converges in \mathbb{R}.
3. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be defined for each $n \geq 1$ by

$$
f_{n}(x)=\sum_{k=1}^{n} \frac{\sin \left(2^{k} \pi x\right)}{2^{k}}
$$

(a) Verify that $\left\{f_{n}\right\}$ is pointwise convergent to a function $f:[0,1] \rightarrow \mathbb{R}$.
(b) Is the sequence $\left\{f_{n}\right\}$ uniformly convergent to f ? Justify your answer.
(c) Prove that the sequence of derivatives $\left\{g_{n}=f_{n}^{\prime}\right\}$ is NOT uniformly convergent on $[0,1]$.
4. (a) Suppose a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $|f(x)-f(y)| \leq \frac{1}{2}|x-y|, \quad \forall x, y \in \mathbb{R}$. Prove that f is uniformly continuous on \mathbb{R}.
(b) Suppose a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $|f(x)| \leq M x^{2}, \quad \forall x \in \mathbb{R}$ and for some $M>0$. Then prove that

$$
\text { (i) } \lim _{x \rightarrow 0} f(x)=0 \quad \text { (ii) } \lim _{x \rightarrow 0} \frac{f(x)}{x}=0
$$

5. (a) Define: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $\quad f(x, y)=x^{2}+y^{2}+\sin x y, \quad \forall(x, y) \in \mathbb{R}^{2}$. Prove that f attains a local minimum value at $(x, y)=(0,0)$.
(b) Let $f: R^{2} \rightarrow R$ be defined by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { for }(x, y) \neq(0,0) \\
0 & \text { for }(x, y)=(0,0)
\end{array}\right.
$$

Show that the second partial derivatives $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ exist at $(0,0)$, but are not equal.

