Comprehensive Exam - Analysis (July 2010)

There are 5 problems, each worth 20 points. Please write only on one side of the page and start each problem on a new page.

- 1. (a) Let S be a non-empty, closed subset of \mathbb{R} . Show that (i) $\sup(S) \in S$, if S is bounded from above, and (ii) $\inf(S) \in S$, if S is bounded from below.
- (b) Let S be a subset of a metric space (X,d) and $\{p_n\} \in S$ be a sequence of points which converges to a point $p \in X$. Prove that $p \in S$ if and only if S is closed.
- 2. Let (X, d) be a metric space. Define the real valued function $f(x) := d(z_0, x), x \in X$ for any fixed $z_0 \in X$.
- (a) Prove that f(x) is continuous at any point $x \in X$.
- (b) Let $K \subset X$ be a non-empty, compact subset of the metric space (X, d). Using the basic properties of compactness and the result of part (a) prove that $\exists x_0 \in K$ such that $d(z_0, x_0) = \inf_{x \in K} d(z_0, x)$.
- 3. Let $\{f_n(x)\}$, $f_n(x) = n^2 x^n (1-x)$, $x \in [0, 1]$ be a sequence of functions.
- (a) Show that $f_n \to 0$ point-wise, for each $x \in [0, 1]$.
- (b) Calculate $\lim_{n\to\infty} \int_0^1 f_n(x) dx$.
- (c) Does the sequence $\{f_n\}$ converge uniformly on [0, 1]? Justify your answer.
- 4. (a) A function $f: \mathbb{R} \to \mathbb{R}$ is defined as $f(x) = x^3 \sin(1/x)$, $x \neq 0$, and f(0) = 0. Prove that f is differentiable at x = 0.
- (b) Let f(x) defined on [0,1] satisfy $|f(x)-f(y)| \le (x-y)^2$, $\forall x,y \in [0,1]$. Prove that f is a constant function on [0,1].
- 5. Suppose the sequences of functions $\{f_n(x)\}$ and $\{g_n(x)\}$ defined on the closed interval $[a,b],\ a,b\in\mathbb{R}$ satisfy the following conditions:
 - (i) \exists a constant M > 0 such that $\left| \sum_{k=1}^{n} f_k(x) \right| \leq M$ for all $x \in [a, b]$ and for all n;
- (ii) $g_1(x) \ge g_2(x) \ge \cdots$ for each $x \in [a, b]$, and $g_n(x) \to 0$ uniformly on [a, b] as $n \to \infty$.
- (a) Verify the identity

$$\sum_{k=1}^{n} f_k(x)g_k(x) = \sum_{k=1}^{n-1} A_k(x)[g_k(x) - g_{k+1}(x)] + A_n(x)g_n(x), \quad \text{where} \quad A_n(x) = \sum_{k=1}^{n} f_k(x).$$

(b) Using part (a) prove that the series $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ converges uniformly on [a,b].