Comprehensive Exam in Analysis June 6, 2008

There are 7 problems on this exam. The best 5 will be taken for the final score.

- 1. Let f be a real valued function defined on the real numbers \mathbb{R} .
- (i) Give the definition for f to be uniformly continuous on \mathbb{R} .
- (ii) Prove that: if, for some constant M > 0, f satisfies

$$|f(x) - f(y)| \le M|x - y|$$
 for all $x, y \in \mathbb{R}$,

then f is uniformly continuous on \mathbb{R} .

- 2. Give an example of a real valued function f and a set $S \subseteq \mathbb{R}$ such that f is continuous on S but not uniformly continuous on S. Prove all your claims.
- 3. Let $f(x) = \frac{g(x) \cos x}{x}$ if $x \neq 0$ and f(x) = a if x = 0, where g''(x) exists and is continuous for all x, and where g(0) = 1, g'(0) = 2, and g''(0) = 4. Justify all steps in the following.
- (i) Make the value a such that f(x) is continuous at x = 0.
- (ii) Establish the value f'(0) directly; do not assume continuity of f'(x) at x = 0.
- (iii) Show that $\lim_{x\to 0} f'(x)$ exists and equals the value f'(0) found in part (ii).
- 4. In each case determine whether the given sequence of functions $f_n(x)$ converges uniformly or not. Justify your answers.

verges uniformly or not. Justify your answers.
(i)
$$f_n(x) = \frac{\sin x}{\sqrt{n}}$$
 on \mathbb{R} . (ii) $f_n(x) = \sum_{k=1}^n x^k$ on $[-1/2, 1/2]$.

- 5. In each case determine whether the given series of numbers converges or diverges. Justify your answers.
- diverges. Justify your answers. (i) $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$. (ii) $\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{(1.1)^n}$.
- 6. Assume that the sequence of real valued continuous functions f_n converges uniformly to f on [0,1].
- (i) Prove that f is continuous.
- (ii) Prove that

$$\lim_{n\to\infty}\int_0^1f_ndx=\int_0^1fdx.$$

- 7. (i) Let $A = \{(x, x^2) \in \mathbb{R}^2 : 0 \le x \le 1\}$. Show that A is closed in \mathbb{R}^2 equipped with the Euclidean distance.
- (ii) Let A_1 be the subset of A as follows: $A_1 = \{(x, x^2) \in A : x \text{ is rational}\}$ Show that A_1 is not closed in \mathbb{R}^2 .