Master of Science Exam in Applied Mathematics Analysis - August 19, 2005

There are 10 problems here. The best 7 will be used for the grade.

1. Consider the space of functions

$$\mathcal{C} = \mathcal{C}([0,1],\mathbb{R}) = \{f : f \text{ maps } [0,1] \to \mathbb{R} \text{ and } f \text{ is continuous}\}$$

and define

$$d(f,g) := \sup\{|f(x) - g(x)| : x \in [0,1]\}.$$

- (a) Show that d(f,g) is a metric on C.
- (b) Let

$$\mathcal{F} := \{ f \in \mathcal{C} : 0 \le f(x) \le 1 \text{ for } x \in [0, 1] \}.$$

Show that \mathcal{F} is (i) bounded and (ii) closed as a set in the metric space \mathcal{C} under the metric d(f,g).

(c) Define a sequence of functions $\{f_n\}$ in \mathcal{C} by

$$f_n(x) = x^n, \ x \in [0,1].$$

Show that there is no subsequence $\{f_{n_k}\}$ of the given sequence that converges in (\mathcal{C},d) .

- 2. Define a sequence $\{a_n\}$ in $[0,1] \subset \mathbb{R}$ by $a_n = \sin(n)$. Even though there seems to be no apparent pattern in the values of this sequence, it must have a convergent subsequence. State the relevant theory that proves the existence of such a convergent subsequence.
- 3. Define $g_n:[0,1]\to\mathbb{R}$ by $g_n(x)=e^{-ne^x}$.
 - (a) Show that $\lim_{n\to\infty} g_n(x) = 0$ uniformly on [0,1].
 - (b) Prove in addition that $\sum_{n=1}^{\infty} g_n(x)$ converges uniformly on [0,1].
- 4. Let $g: \mathbb{R}^2 \to \mathbb{R}$ be defined by $g(x,y) = \sin(x/3) + \cos(y/3)$.
- (a) Show that the gradient vector of partial derivatives $\nabla g = (\partial g/\partial x, \partial g/\partial y)$ satisfies $\|\nabla g\| \leq 1/2$ for all $(x,y) \in \mathbb{R}^2$, (the vector norm is the Euclidean norm).
- (b) The Mean Value Theorem asserts that if a function $f: \mathbb{R}^2 \to \mathbb{R}$ has continuous partial derivatives on all of \mathbb{R}^2 then for all $(x_0, y_0), (x, y) \in \mathbb{R}^2$ there exists $\theta = \theta(x_0, y_0, x, y) \in (0, 1)$ such that

$$f(x,y) = f(x_0, y_0) + (\nabla f) \cdot (x - x_0, y - y_0),$$

where the dot product is indicated in the formula and where each partial derivative in the gradient vector $\nabla f = (\partial f/\partial x, \partial f/\partial y)$ is evaluated at the point $(x_0 + \theta(x - x_0), y_0 + \theta(y - y_0)) \in \mathbb{R}^2$. Conclude that

$$|g(x,y) - g(x_0,y_0)| \le (1/2)||(x-x_0,y-y_0)||$$

for all $(x_0, y_0), (x, y) \in \mathbb{R}^2$.

(c) Define also $h: \mathbb{R}^2 \to \mathbb{R}$ by $h(x,y) = \sin(x/5) + \cos(y/5)$, and define the mapping $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ by $\mathbf{F}(x,y) = (g(x,y),h(x,y))$. Let $(a_0,b_0)=(0,0)\in\mathbb{R}^2$ and inductively define $(a_{n+1},b_{n+1})=\mathbf{F}(a_n,b_n)\in\mathbb{R}^2$. Verify that the mapping \mathbf{F} on \mathbb{R}^2 is indeed a contraction and so conclude by the Contraction Mapping Theorem (check the hypotheses please) that the sequence $\{(a_n,b_n)\}$ has a limit in \mathbb{R}^2 .

- 5. Let $f:(0,1]\to\mathbb{R}$
 - (a) Define uniform continuity for f on (0,1].
- (b) Assume f is uniformly continuous. Let $\{x_n\}$ be a Cauchy sequence in $\{0,1\}$. Show that $\{f(x_n)\}$ is a Cauchy sequence in \mathbb{R} .
- 6. Define f on \mathbb{R} by

$$f(x) = \begin{cases} \frac{\sin x}{x} & if \quad x \neq 0 \\ 1 & if \quad x = 0 \end{cases}$$

- (a) Show that f is continuous on \mathbb{R} .
- (b) Show that f'(0) exists and find f'(0).

Hint: One approach is l'Hospital's rule.

- 7. Let K be a compact set in a metric space (X,d) and let f be a continuous real valued function on (X,d).
 - (a) Prove that there is an $x \in X$ for which

$$f(x) = \sup \left\{ f(t) : t \in X \right\}.$$

- (b) Give an example of a set $K \subset \mathbb{R}$ and a function f on K for which the assertion (a) fails.
- 8. One form of completeness of the real numbers \mathbb{R} is that every bounded increasing sequence converges. Use this property to prove that every Cauchy sequence in \mathbb{R} converges.
- 9. Find the radius of convergence of each power series $\sum_{n=0}^{\infty} a_n x^n$.

$$\left[\begin{array}{ccc} a) \ a_n = n & b) \ a_n = \left\{\begin{array}{ccc} 0 & if & n = 0 \\ \frac{1}{n} & if & n > 0 \end{array}\right. \quad c) \ a_n = \left\{\begin{array}{ccc} 1 & if & n = 2^k, \text{ some } k \ge 0 \\ 0 & if & otherwise \end{array}\right]$$

10. Let f be a function with domain $D \subset \mathbb{R}^2$, range \mathbb{R}^2 , and defined by

$$f(x,y) = \left(\frac{x}{y}, \frac{y}{x}\right).$$

- a) What is the natural domain D of f?
- b) The local inverse mapping theorem applies to f. Find the set J for which the theorem guarantees a local inverse.