

Department of Mathematics Sunton Analysis Comprehensive Exam - 2003

1. a) Determine whether the following series converge or diverge. Justify your answer.

$$\sum_{k=1}^{\infty} \frac{1}{e^k}, \quad \sum_{k=1}^{\infty} \frac{1}{3k+1}.$$

b)Prove the series

$$\sum_{k=0}^{\infty} \frac{x^k}{k!}$$

converges uniformly on [-a,a] for any positive real constant a.

- 2. Let $f_n(x) = e^{-nx}$ for $n \ge 1$ and $x \ge 0$.
 - a) Show that f_n has a pointwise limit on $[0, \infty)$.
 - b) Does f_n converge uniformly? Support your claim with a rigorous argument.
- 3. a) State the Monotone Convergence Theorem for sequences of reals numbers $\{a_n\}_{n=1}^{\infty}$.
 - b) Let $a_n = \sum_{k=1}^n \frac{1}{k} \frac{1}{2^k}$. Prove that $\lim_{n\to\infty} (a_n)$ exists.
- 4. Suppose that (x_n) is a Cauchy sequence in a compact metric space K. Show directly using the definitions of "Cauchy sequence" and "compact set" that the sequence converges in K.
- 5. a) Let X be a metric space with metric d and let $f: X \to X$. Define what it means for f to be a contraction on X.
- b) Use the Mean Value Theorem to show that if $f: R \to R$ has a derivative satisfying $|f'(x)| \le \lambda$ for all x with $0 \le \lambda < 1$, then f is a contraction on R.
- 6. Suppose that (f_n) is a sequence of continuous functions on [0,1] which converge to f on [0,1].
 - a) If the convergence is uniform prove that

$$\lim_{n\to\infty}\int_0^1f_n(x)dx=\int_0^1f(x)dx.$$

b) Give example in which convergence is not uniform and

$$\lim_{n\to\infty}\int_0^1f_n(x)dx\neq\int_0^1f(x)dx.$$

- 7. a) Let f be a continuously differentiable function from R^2 to R. Show that if there is a local minimum at (0,0) then we must have $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$.
- b) If $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$, does this imply that there is a local extrema at (0,0)? Prove it or give a counterexample.