ANALYSIS COMPREHENSIVE - 2000

Do each of the following problems.

- 1. a. State the definition of a Cauchy sequence (s_n) in a metric space (X,d).
- b. Let $f_n(x) = \sum_{k=1}^n e^{-k} \cos^2(2\pi kx)$, $0 \le x \le 1$, be a sequence of functions (f_n) in the metric space C of continuous functions on [0,1] with the metric $d(f,g) = \sup_{x \in [0,1]} |f(x) g(x)|$. Show that the sequence (f_n) is Cauchy.
 - c. Find all of the cluster points for the real sequence $\left(\cos(\frac{\pi k}{2})\right)_{k=1}^{\infty}$.
- 2. Let $f: R \to R$ be a continuous function.
- a. If (x_n) is a Cauchy sequence in R, then show $(f(x_n))$ is a Cauchy sequence in R.
 - b. If $K \subset R$ is compact, then show f(K) is compact.
 - c. Must $f^{-1}(K)$ be compact? (Prove or provide counter-example)
- 3. Suppose the sequence of functions (f_n) with $f_n: [0,1] \to R$ continuous, converges uniformly to a function f.
 - a. Show that f is continuous.
 - b. Show that $\int_0^1 f_n(x)dx \to \int_0^1 f(x)dx$.
- 4. a. State the Fundamental Theorem of Calculus.
- b. Suppose that f is continuous on [a,b]. Let $F(x) = \int_a^x f(t)dt$ for $x \in [a,b]$. Show that if F(x) = 0 for all $x \in [a,b]$, then f(x) = 0 for all $x \in [a,b]$.
- 5. Let $G: \mathbb{R}^n \to \mathbb{R}^m$.
 - a. Give the definition of the derivative DG(x) for $x \in \mathbb{R}^n$.
- b. Suppose that L is a linear map; that is L(x+y) = L(x) + L(y) and $L(\alpha x) = \alpha L(x)$. Show that DL(x) = L.
- 6. If a real valued function f is defined and continuous on the closed interval [a,b], then show that f must be uniformly continuous.