Comprehensive Exam - Analysis (June 2011)

There are 5 problems, each worth 20 points. Please write only on one side of the page and start each problem on a new page.
1.(a) Let $f(x)$ be a three times differentiable function on $[-1,1]$ such that $f(-1)=0, f(0)=0$, $f(1)=1$ and $f^{\prime}(0)=0$. Prove that $f^{\prime \prime \prime}(x) \geq 3$ for some $x \in(-1,1)$.
(b) A function is defined by $f(x)=x$ if $x \in \mathbb{Q}$ and $f(x)=0$, otherwise. Prove or disprove that f is Riemann integrable on $[0,1]$.
2. Let $(C[0,1], d)$ be the metric space of continuous, real valued functions on $[0,1]$ with the metric $d(f, g):=\max _{0 \leq x \leq 1}|f(x)-g(x)|$. Consider a sequence $\left\{f_{n}\right\} \in C[0,1]$ and the zero function $0 \in C\left[(0,1]\right.$ such that (i) $d\left(f_{n}, 0\right)=1$ for all n, and (ii) $f_{n} \rightarrow 0$ pointwise on $[0,1]$.
(a) Verify that no subsequence of the sequence $\left\{f_{n}\right\}$ converges on $(C[0,1], d)$.
(b) Give an example of such a sequence $\left\{f_{n}\right\}$ satisfying properties (i) and (ii) above.
3. Let (X, d) be a nonempty, complete metric space and $f: X \rightarrow X$ a function. Suppose there exists $0 \leq k<1$ such that $d(f(x), f(y)) \leq k d(x, y)$ for all $x, y \in X$.
(a) Show that f is uniformly continuous on X.
(b) Prove that there exists a unique point $c \in X$ such that $f(c)=c$. (Hint: Consider the sequence $\left\{x_{n}\right\}$ defined by $x_{n+1}=f\left(x_{n}\right), n=0,1, \ldots$ where x_{0} is any point in X.)
4. (a) Let $f(x, y)=\sin (\sqrt{|x y|}),(x, y) \in E^{2}$ where E^{2} is the two-dimensional Euclidean metric space. Show directly from the definition that the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ both exist at $(0,0)$ but that f is not differentiable at $(0,0)$.
(b) Let f be a real valued function on a connected open subset U of the n-dimensional Euclidean metric space E^{n}. If all the partial derivatives $\frac{\partial f}{\partial x_{i}}=0, i=1,2, \ldots, n$ on all of U, then prove that f is constant on U.
5. Suppose $\sum_{m=1}^{\infty} a_{m}$ is a convergent series of positive terms and let $r_{n}=\sum_{m=n}^{\infty} a_{m}$. Prove that

$$
\text { (a) } \sum_{n=1}^{\infty} \frac{a_{n}}{r_{n}} \text { diverges } \quad \text { (b) } \sum_{n=1}^{\infty} \frac{a_{n}}{\sqrt{r_{n}}} \quad \text { converges . }
$$

(Hint: For part (a) show that $a_{m+1} / r_{m+1}+\ldots+a_{n} / r_{n}>1-r_{n+1} / r_{m+1}$ and apply Cauchy criterion. For part (b), show that $\left.a_{n} / \sqrt{r_{n}}<2\left(\sqrt{r_{n}}-\sqrt{r_{n+1}}\right)\right)$.

