Comprehensive Exam – Analysis (June 2011)

There are 5 problems, each worth 20 points. Please write only on one side of the page and start each problem on a new page.

1.(a) Let f(x) be a three times differentiable function on [-1, 1] such that f(-1) = 0, f(0) = 0, f(1) = 1 and f'(0) = 0. Prove that $f'''(x) \ge 3$ for some $x \in (-1, 1)$.

(b) A function is defined by f(x) = x if $x \in \mathbb{Q}$ and f(x) = 0, otherwise. Prove or disprove that f is Riemann integrable on [0, 1].

2. Let (C[0,1],d) be the metric space of continuous, real valued functions on [0,1] with the metric $d(f,g) := \max_{0 \le x \le 1} |f(x) - g(x)|$. Consider a sequence $\{f_n\} \in C[0,1]$ and the zero function $0 \in C[(0,1]$ such that (i) $d(f_n,0) = 1$ for all n, and (ii) $f_n \to 0$ pointwise on [0,1].

(a) Verify that no subsequence of the sequence $\{f_n\}$ converges on (C[0,1],d).

(b) Give an example of such a sequence $\{f_n\}$ satisfying properties (i) and (ii) above.

3. Let (X, d) be a nonempty, complete metric space and $f : X \to X$ a function. Suppose there exists $0 \le k < 1$ such that $d(f(x), f(y)) \le kd(x, y)$ for all $x, y \in X$.

(a) Show that f is uniformly continuous on X.

(b) Prove that there exists a unique point $c \in X$ such that f(c) = c. (**Hint**: Consider the sequence $\{x_n\}$ defined by $x_{n+1} = f(x_n)$, $n = 0, 1, \ldots$ where x_0 is any point in X.)

4. (a) Let $f(x,y) = \sin(\sqrt{|xy|})$, $(x,y) \in E^2$ where E^2 is the two-dimensional Euclidean metric space. Show directly from the definition that the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ both exist at (0,0) but that f is not differentiable at (0,0).

(b) Let f be a real valued function on a connected open subset U of the *n*-dimensional Euclidean metric space E^n . If all the partial derivatives $\frac{\partial f}{\partial x_i} = 0$, $i = 1, 2, \ldots, n$ on all of U, then prove that f is constant on U.

5. Suppose $\sum_{m=1}^{\infty} a_m$ is a convergent series of positive terms and let $r_n = \sum_{m=n}^{\infty} a_m$. Prove that

(a)
$$\sum_{n=1}^{\infty} \frac{a_n}{r_n}$$
 diverges (b) $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{r_n}}$ converges.

(**Hint**: For part (a) show that $a_{m+1}/r_{m+1} + \ldots + a_n/r_n > 1 - r_{n+1}/r_{m+1}$ and apply Cauchy criterion. For part (b), show that $a_n/\sqrt{r_n} < 2(\sqrt{r_n} - \sqrt{r_{n+1}})$).