PhD Comprehensive Exam – Scientific Computation (August 2025)

Attempt ANY 5 of the following 6 problems. CROSS OUT any problem that you do not want to be graded. Please write only on one side of the page and start each problem on a new page.

1. Consider approximating the solution of the IVP u'(t) = f(u(t)), $u(0) = u_0$ by the predictor-corrector method

$$\widehat{U}^{n+1} = U^n + k f(U^n) \,, \qquad U^{n+1} = U^n + \frac{k}{2} \left[f(U^n) + f(\widehat{U}^{n+1}) \right] \,.$$

Here the grid is $t_n = nk$ with time step k > 0 and $U^n \approx u(t_n)$.

- (a) Is the method explicit or implicit? What initial data is needed to advance the time step?
- (b) Show the method is consistent. What is the order of accuracy?
- (c) Find the region of absolute stability. What is the interval of absolute stability along the real axis? Does the region of absolute stability include a subset of the imaginary axis? Is this method zero stable?
- 2. Consider the linear system $A\mathbf{x} = \mathbf{f}$ given explicitly as

$$2x_1 - x_2 = 1, -x_1 + 2x_2 - x_3 = 0, -x_2 + 2x_3 = 1,$$

with exact solution $\mathbf{x} = (1, 1, 1)^T$.

- (a) Write down the Jacobi iterative method. Using $\mathbf{x}^{(0)} = \mathbf{0}$ as an initial guess, take one step. Compute the errors $\|\mathbf{e}^{(0)}\|_2$, $\|\mathbf{e}^{(1)}\|_2$ where $\mathbf{e}^{(k)} = \mathbf{x}^{(k)} \mathbf{x}$.
- (b) Repeat part (a) for the Gauss-Seidel method. Which method gives a smaller errors? Based on known convergence results, does this make sense?
- (c) Prove that the Jacobi method converges. Derive an error equation whose solution you can bound. What is convergence rate?
- 3. Consider the boundary value problem

$$-u''(x) = f(x), \quad 0 < x < 1, \quad u(0) = 0, \ u(1) = 0.$$

- (a) Put this problem in a weak formulation. Identify the energy inner product. Identify an appropriate vector space in which to work. Are the boundary conditions essential or natural?
- (b) Discretize this problem using 5 equally spaced grid points (4 subintervals). Using a piecewise linear Lagrange basis, formulate the finite element approximation. Identify the appropriate subspace and its dimension. Make a sketch of the interval and basis functions.
- (c) Derive the stiffness matrix and load vector for f(x) = 1. You do *not* need to solve. Compare your system to a standard finite difference approximation.
- (d) What is the expected rate of convergence in the L^2 norm and in the Energy norm?

4. Create and analyze a finite difference method approximation for the heat equation $u_t(x,t) = u_{xx}(x,t)$, $(x,t) \in (0,1) \times (0,T)$ with periodic boundary conditions

$$u(0,t) = u(1,t),$$
 $u_x(0,t) = u_x(1,t)$ and $u(x,0) = \phi(x)$.

- (a) Take equally spaced grid in x with n points i.e., $\Delta x = \frac{1}{n}$. Denote by $U_j(t) \approx u(x_j, t)$. Using the centered second difference for u_{xx} , write down a system of n first-order ODEs in time for $U_j(t)$ and express it as U'(t) = MU(t). Describe the entries and structure of matrix M.
- (b) Take an equally spaced grid in t with m+1 points i.e., $\Delta t = \frac{T}{m}$. Denote by $U_j^k \approx u(x_j, t_k)$. Use a leapfrog scheme to discretize the system of part (a) in time. Write down a system of equations to compute U_j^{k+1} , $0 \le j \le n-1$ in terms of U_r^k and U_s^{k-1} for appropriate r, s.
- (c) Verify the method is consistent. What is the order of accuracy?
- (d) Perform von Neumann stability analysis. Is this method stable?
- **5.** Suppose $p_k(x)$ are polynomials of degree k satisfying the orthogonality conditions

$$\int_{-1}^{1} p_k(x) p_m(x) w(x) dx = 0 \qquad m \neq k.$$

Furthermore, let $-1 = x_0 < x_1 < \cdots < x_N$ be the N+1 ordered roots of the polynomial $q(x) = p_{N+1}(x) + ap_N(x)$ where a is chosen such that q(-1) = 0, and w_0, w_1, \ldots, w_N be the solution of the linear system

$$\sum_{j=0}^{N} (x_j)^k w_j = \int_{-1}^{1} x^k w(x) dx, \qquad 0 \le k \le N.$$

(a) Denote the vector space of polynomials of degree k by \mathbb{P}_k . Prove Gaussian quadrature for all polynomials $p \in \mathbb{P}_{2N}$

$$\sum_{j=0}^{N} p(x_j)w_j = \int_{-1}^{1} p(x)w(x)dx.$$

(b) Let $u, v \in \mathbb{P}_N$. Define the discrete inner product $(u, v)_N = \sum_{j=0}^N u_j v_j w_j$, where $u_j := u(x_j)$ and $v_j := v(x_j)$ are values at the collocation points $\{x_j\}_{j=0}^N$. Prove that $(u, v)_N = (u, v)$ where

$$(u,v) := \int_{-1}^{1} u(x)v(x)w(x)dx$$
.

(c) Consider a Legendre (w(x) = 1) spectral approximation of the advection equation

$$\left. \frac{\partial u^N}{\partial t} + \frac{\partial u^N}{\partial x} \right|_{x=x_i} = 0, \quad -1 < x < 1, \quad u^N(-1,t) = 0.$$

where the approximate solution $u^N \in \mathbb{P}_N$. Show that the solution is stable with respect to the discrete norm for all t > 0.

6. Consider the initial-boundary value problem with periodic boundary conditions

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 2\pi, \quad u(0, t) = u(2\pi, t), \quad u_x(0, t) = u_x(2\pi, t)$$

with $u(x,0) = u_0(x) \in H_p^m(0,2\pi)$ which is defined as the periodic subspace

$$H_p^m(0,2\pi) = \{u: ||u||_{H^m(0,2\pi)} < \infty, \quad u^{(k)}(x+2\pi) = u^{(k)}(x), \quad k = 0, 1, \dots, m-1\},$$

where the Sobolev norm of order m is defined by

$$||u||_{H^m(0,2\pi)} = \left(\sum_{k=0}^m \int_0^{2\pi} |u^{(k)}(x)|^2 dx\right)^{1/2},$$

- (a) Consider a function $f \in H_p^m(0, 2\pi)$. Give an intuitive argument for decay rate of the Fourier coefficients.
- (b) Derive a Fourier-Galerkin method. Approximate the solution u(x,t) by the truncated Fourier series

$$u^{N}(x,t) = \sum_{k=-N/2}^{N/2} \widehat{u}_{k}(t)e^{ikx}, \qquad \widehat{u}_{k}(t) = \frac{1}{2\pi} \int_{0}^{2\pi} u(x,t)e^{-ikx}dx.$$

Derive the equation describing the evolution of the Fourier coefficients $\hat{u}_k(t)$.

- (c) Write down the explicit solution of the Galerkin problem.
- (d) Show that the Galerkin method is stable. That is, show that the energy of the solution is bounded for $t \ge 0$.
- (e) Instead of the exact solution in part (c), approximate the evolution of the Fourier coefficients by the backward Euler method. Show that this method is absolutely stable.