PhD Comprehensive Exam - Scientific Computation (June 2023)

Attempt ANY 5 of the following 6 problems. CROSS OUT any problem that you do not want to be graded. Please write only on one side of the page and start each problem on a new page.

1. Consider the wave equation initial boundary value problem

$$
u_{t t}=c^{2} u_{x x}, \quad 0<x<L, \quad u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x)
$$

where c is the wave speed. Boundary conditions are considered below.
Introduce a uniform discretization $x_{j}=j h, j=0,1, \ldots, m+1$ with grid spacing $h=$ $L /(m+1)$. Time is discretized by $t_{n}=n k$ with time step $k>0$. Consider the leapfrog scheme

$$
\frac{U_{j}^{n+1}-2 U_{j}^{n}+U_{j}^{n-1}}{k^{2}}=c^{2} \frac{U_{j+1}^{n}-2 U_{j}^{n}+U_{j-1}^{n}}{h^{2}},
$$

where U_{j}^{n} is the approximation of the solution $u\left(x_{j}, t_{n}\right)$.
(a) Show that this approximation is second-order accurate in space and time.
(b) Write down the time stepping equation. That is, rewrite the discrete system in the form $U_{j}^{n+1}=F\left(U_{j-1}^{n}, U_{j}^{n}, U_{j+1}^{n}, U_{j}^{n-1}\right)$.
(c) Implement the Dirichlet boundary conditions: $u(0, t)=u_{a}, \quad u(L, t)=u_{b}$ where u_{a} and u_{b} are constant. Write down the time stepping equation at x_{1} and x_{m}.
(d) Implement the Neumann boundary conditions: $u_{x}(0, t)=u_{a}^{\prime}, \quad u_{x}(L, t)=u_{b}^{\prime}$ where u_{a}^{\prime} and u_{b}^{\prime} are constant. Write down the time stepping equation at x_{0} and x_{m+1}. Be sure to maintain the overall accuracy of the method.
(e) Implement the periodic boundary conditions: $u(L)=u(0), \quad u_{x}(L)=u_{x}(0)$. Write down the time stepping equation at x_{1} and x_{m}.
2. Consider the generic one-step integration scheme

$$
y_{n+1}=y_{n}+h\left[a f\left(t_{n}, y_{n}\right)+b f\left(t_{n+1}, y_{n+1}\right)\right], \quad a, b \in \mathbb{R}
$$

to solve the initial value problem $y^{\prime}=f(t, y), \quad y_{0}=y(0)$.
(a) What is the optimal choice of a and b to obtain the most accurate approximation? What is the order of accuracy?
(b) Is this method zero stable?
(c) Give a set of conditions so that this method converges as $h \rightarrow 0$.
(d) Find the absolute stability of this problem when $a \neq b$ and when $a=b$. Consider both $\lambda \in \mathbb{C}$ and $\lambda \in \mathbb{R}$.
3. Consider the one-dimensional advection equation

$$
u_{t}+a u_{x}=0, \quad u(x, 0)=u_{0}(x)
$$

where $a \neq 0, x \in \mathbb{R}$ and $t \geq 0$. Take the equally spaced spatial discretization $x_{j}=j \Delta x, j \in \mathbb{Z}$ and temporal discretization $t_{n}=n \Delta t$ where $n=0,1, \ldots$ Denote $U_{j}^{n} \approx u\left(x_{j}, t_{n}\right)$. Apply the Lax-Friedrichs finite-difference approximation

$$
\frac{U_{j}^{n+1}-\frac{1}{2}\left(U_{j+1}^{n}+U_{j-1}^{n}\right)}{\Delta t}+a \frac{U_{j+1}^{n}-U_{j-1}^{n}}{2 \Delta x}=0
$$

(a) Calculate the order of accuracy of this method.
(b) Apply the von Neumann stability analysis to this scheme.
(c) State a theorem and conditions which guarantee convergence.
(d) Is this scheme convergent?
4. Consider the $n \times n$ linear system $A \mathbf{x}=\mathbf{f}$ where A is invertible. Expressing $A=M-N$ for an invertible matrix M, the system becomes $M \mathbf{x}=N \mathbf{x}+\mathbf{f}$ which is equivalent to the fixed point problem: $\mathbf{x}=G \mathbf{x}+\mathbf{h}$ with $G=M^{-1} N$ and $\mathbf{h}=M^{-1} \mathbf{f}$. Solving the system can thus be achieved by iteration: $\mathbf{x}^{n+1}=G \mathbf{x}^{n}+\mathbf{h}$. The method is guaranteed to converge to $\mathbf{x}^{*}=A^{-1} \mathbf{f}$ if $\|G\|<1$ for some matrix norm e.g., the spectral norm $\|G\|=\rho(G)=\max \{|\lambda|$, λ is an eigenvalue of $G\}$ if G is symmetric matrix, and $\|G\|=\rho\left(\left(G^{T} G\right)^{1 / 2}\right)$ if G is not symmetric.

In what follows $A=D-L-U$ where D denotes the diagonal part of A while $-U$ and $-L$ denote the strictly upper and lower triangular parts of A, respectively. Note that

- Forward Gauss-Seidel method corresponds to the choice $M=D-L, N=U$. Hence the iteration matrix is $G_{f}=(D-L)^{-1} U$.
- Backward Gauss-Seidel method corresponds to $M=D-U, N=L$. Hence the iteration matrix is $G_{b}=(D-U)^{-1} L$.
- Symmetric Gauss-Seidel method corresponds to a forward Gauss-Seidel iteration followed by a backward Gauss-Seidel iteration. Hence the iteration matrix is

$$
G_{s}=G_{b} G_{f}=(D-U)^{-1} L(D-L)^{-1} U .
$$

Define $B=(D-U)^{-1} D(D-L)^{-1}$.
(a) Verify that $G_{s}=I-B A$. (Hence the symmetric Gauss-Siedel method is the same iteration method as that of $\left.B A \mathbf{x}=B \mathbf{f}: \mathbf{x}^{n+1}=(I-B A) \mathbf{x}^{n}+B \mathbf{f}\right)$.
(b) Show that if A is symmetric: $A=A^{T}$ (equivalently $U=L^{T}$) then B is also symmetric. Does this imply G_{s} is symmetric matrix?
(c) Consider the Poisson equation $-u^{\prime \prime}(x)=f(x)$ on (0,1) with Dirichlet boundary conditions: $u(0)=u(1)=0$. Use centered differences to discretize the boundary value problem on $[0,1]$ with $n=2$ interior, equi-distant nodes. Derive a linear system $A \mathbf{u}=\mathbf{f}$ where $\mathbf{u}=\left[u_{1}, u_{2}\right]^{T}$ are the approximate values of $u(x)$ at the interior nodes, $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$, and a suitable \mathbf{f}. Compute G_{s} in this case and show that $\left\|G_{s}\right\|<1$ (for a matrix norm of your choosing). Hence the symmetric Gauss-Seidel method converges.
5. In polar coordinates Poisson equation on unit disk $\Omega=\{(r, \theta) \mid 0 \leq r \leq 1,0 \leq \theta<2 \pi\}$ reads as

$$
\Delta u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=f(r, \theta), \quad 0<r<1, \quad u(r=1, \theta)=0
$$

In this problem, we assume $f=f(r)$ is θ-independent. By uniqueness, the solution is also θ-independent, hence radially symmetric: $u=u(r)$.
(a) Derive the following equation: $\frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)=r f(r), 0<r<1$. Then write down an explicit boundary value problem on the interval $[-1,1]$. (Hint: Extend $f(r)$ to $-1<r<1$, by even extension $f(-r)=f(r)$).
(b) Discretize the boundary value problem using the collocation method: use Chebyshev nodes $r_{j}=\cos (j \pi / N), j=0, \ldots N$ on the interval $[-1,1]$ and $(N+1) \times(N+1)$ Chebyshev differentiation matrix D_{N} satisfying $p^{\prime}\left(r_{k}\right)=\sum_{j}\left(D_{N}\right)_{k j} p\left(r_{j}\right), p(r)$ being the interpolating polynomial for $\left(r_{j}, u_{j}\right)$ where u_{j} approximates $u\left(r_{j}\right)$. Express your answer as a linear system: $A \mathbf{U}=\mathbf{F}, \mathbf{U}$ being the vector of 'unknowns' u_{j}. Make sure to correctly impose the boundary conditions.
(c) Show that $p(r)$, the interpolating polynomial obtained in part (b), is an even function, i.e., $p(-r)=p(r)$, and conclude that $p^{\prime}(0)=0$. Explain why this is consistent with the radially symmetric property of the exact solution u.
6. This problem deals with the Radial Basis Function (RBF) method applied to solving the linear Schrodinger equation for the complex function $q(x, t)$

$$
i q_{t}+q_{x x}+V(x) q=0, \quad q(x, 0)=q_{0}(x)
$$

where $x \in[0, L], t \geq 0$, and $V=V(x)$ is a real valued (potential) function.
(a) Consider first $V(x)=0$. Choosing an appropriate radial function $\phi=\phi(r), r>0$ and discretization nodes x_{j}, find the approximate solution of the form

$$
q(x, t)=\sum_{j} c_{j}(t) \phi\left(\left|x-x_{j}\right|\right)
$$

Comment on the invertibility of the matrices involved.
(b) Redo part (a) for a general potential function $V(x)$.
(c) The nonlinear Schrodinger equation is

$$
i q_{t}+q_{x x}+|q|^{2} q=0, \quad q(x, 0)=q_{0}(x)
$$

where $V(x)$ is replaced by $|q(x, t)|^{2}$. Using the explicit Euler time discretization, describe the algorithm by which one can solve this equation numerically using the RBF-PS (pseudo-spectral) method.

