
PhD Comprehensive Exam – Scientific Computation (June 2023)

Attempt ANY 5 of the following 6 problems. CROSS OUT any problem that you
do not want to be graded. Please write only on one side of the page and start

each problem on a new page.

1. Consider the wave equation initial boundary value problem

utt = c2uxx , 0 < x < L, u(x, 0) = f(x) , ut(x, 0) = g(x)

where c is the wave speed. Boundary conditions are considered below.
Introduce a uniform discretization xj = jh, j = 0, 1, . . . ,m + 1 with grid spacing h =

L/(m+1). Time is discretized by tn = nk with time step k > 0. Consider the leapfrog scheme
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where Un
j is the approximation of the solution u(xj, tn).

(a) Show that this approximation is second-order accurate in space and time.

(b) Write down the time stepping equation. That is, rewrite the discrete system in the form
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(c) Implement the Dirichlet boundary conditions: u(0, t) = ua, u(L, t) = ub where ua and ub

are constant. Write down the time stepping equation at x1 and xm.

(d) Implement the Neumann boundary conditions: ux(0, t) = u′

a, ux(L, t) = u′

b where u
′

a and
u′

b are constant. Write down the time stepping equation at x0 and xm+1. Be sure to maintain
the overall accuracy of the method.

(e) Implement the periodic boundary conditions: u(L) = u(0), ux(L) = ux(0). Write down
the time stepping equation at x1 and xm.

2. Consider the generic one-step integration scheme

yn+1 = yn + h [af(tn, yn) + bf(tn+1, yn+1)] , a, b ∈ R

to solve the initial value problem y′ = f(t, y), y0 = y(0).

(a) What is the optimal choice of a and b to obtain the most accurate approximation? What
is the order of accuracy?

(b) Is this method zero stable?

(c) Give a set of conditions so that this method converges as h → 0.

(d) Find the absolute stability of this problem when a 6= b and when a = b. Consider both
λ ∈ C and λ ∈ R.
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3. Consider the one-dimensional advection equation

ut + aux = 0 , u(x, 0) = u0(x)

where a 6= 0, x ∈ R and t ≥ 0. Take the equally spaced spatial discretization xj = j∆x, j ∈ Z

and temporal discretization tn = n∆t where n = 0, 1, . . . . Denote Un
j ≈ u(xj, tn). Apply the

Lax-Friedrichs finite-difference approximation
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(a) Calculate the order of accuracy of this method.

(b) Apply the von Neumann stability analysis to this scheme.

(c) State a theorem and conditions which guarantee convergence.

(d) Is this scheme convergent?

4. Consider the n×n linear system Ax = f where A is invertible. Expressing A = M−N for an
invertible matrix M , the system becomes Mx = Nx+ f which is equivalent to the fixed point
problem: x = Gx+h with G = M−1N and h = M−1f . Solving the system can thus be achieved
by iteration: xn+1 = Gxn + h. The method is guaranteed to converge to x∗ = A−1f if ‖G‖ < 1
for some matrix norm e.g., the spectral norm ‖G‖ = ρ(G) = max{|λ|, λ is an eigenvalue ofG}
if G is symmetric matrix, and ‖G‖ = ρ

(

(GTG)1/2
)

if G is not symmetric.
In what follows A = D−L−U where D denotes the diagonal part of A while −U and −L

denote the strictly upper and lower triangular parts of A, respectively. Note that

• Forward Gauss-Seidel method corresponds to the choice M = D − L,N = U . Hence the
iteration matrix is Gf = (D − L)−1U .

• Backward Gauss-Seidel method corresponds to M = D − U,N = L. Hence the iteration
matrix is Gb = (D − U)−1L.

• Symmetric Gauss-Seidel method corresponds to a forward Gauss-Seidel iteration followed
by a backward Gauss-Seidel iteration. Hence the iteration matrix is

Gs = GbGf = (D − U)−1L(D − L)−1U .

Define B = (D − U)−1D(D − L)−1.

(a) Verify that Gs = I−BA. (Hence the symmetric Gauss-Siedel method is the same iteration
method as that of BAx = Bf : xn+1 = (I −BA)xn + Bf).

(b) Show that if A is symmetric: A = AT (equivalently U = LT ) then B is also symmetric.
Does this imply Gs is symmetric matrix?

(c) Consider the Poisson equation −u′′(x) = f(x) on (0, 1) with Dirichlet boundary conditions:
u(0) = u(1) = 0. Use centered differences to discretize the boundary value problem on [0, 1]
with n = 2 interior, equi-distant nodes. Derive a linear system Au = f where u = [u1, u2]

T

are the approximate values of u(x) at the interior nodes, A =

[

2 −1
−1 2

]

, and a suitable f .

Compute Gs in this case and show that ‖Gs‖ < 1 (for a matrix norm of your choosing). Hence
the symmetric Gauss-Seidel method converges.
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5. In polar coordinates Poisson equation on unit disk Ω = {(r, θ)
∣

∣ 0 ≤ r ≤ 1, 0 ≤ θ < 2π}
reads as
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In this problem, we assume f = f(r) is θ-independent. By uniqueness, the solution is also
θ-independent, hence radially symmetric: u = u(r).

(a) Derive the following equation:
∂
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= rf(r), 0 < r < 1. Then write down an

explicit boundary value problem on the interval [−1, 1]. (Hint: Extend f(r) to −1 < r < 1, by
even extension f(−r) = f(r)).

(b) Discretize the boundary value problem using the collocation method: use Chebyshev nodes
rj = cos(jπ/N), j = 0, . . . N on the interval [−1, 1] and (N + 1)× (N + 1) Chebyshev differen-
tiation matrix DN satisfying p′(rk) =

∑

j(DN)kjp(rj), p(r) being the interpolating polynomial
for (rj, uj) where uj approximates u(rj). Express your answer as a linear system: AU = F, U
being the vector of ’unknowns’ uj . Make sure to correctly impose the boundary conditions.

(c) Show that p(r), the interpolating polynomial obtained in part (b), is an even function, i.e.,
p(−r) = p(r), and conclude that p′(0) = 0. Explain why this is consistent with the radially
symmetric property of the exact solution u.

6. This problem deals with the Radial Basis Function (RBF) method applied to solving the
linear Schrodinger equation for the complex function q(x, t)

iqt + qxx + V (x) q = 0 , q(x, 0) = q0(x)

where x ∈ [0, L], t ≥ 0, and V = V (x) is a real valued (potential) function.

(a) Consider first V (x) = 0. Choosing an appropriate radial function φ = φ(r), r > 0 and
discretization nodes xj, find the approximate solution of the form

q(x, t) =
∑

j

cj(t)φ(|x− xj|)

Comment on the invertibility of the matrices involved.

(b) Redo part (a) for a general potential function V (x).

(c) The nonlinear Schrodinger equation is

iqt + qxx + |q|2q = 0, q(x, 0) = q0(x),

where V (x) is replaced by |q(x, t)|2. Using the explicit Euler time discretization, describe the
algorithm by which one can solve this equation numerically using the RBF-PS (pseudo-spectral)
method.


