PhD Comprehensive Exam - Ring Theory (May 2023)

Attempt ANY 5 of the following 6 problems. CROSS OUT any problem that you do

 not want to be graded. Please write only on one side of the page and start each problem on a new page.In any question for which an example of a ring or module having certain properties is requested, make sure to justify why the example you've given really does have those properties. (In other words, don't just write down the example without appropriate explanation.)

Throughout, R, S, and T denote associative rings with identity. Homomorphisms of left modules will be written on the right: so we write $(m) f$, and $f g$ means 'first f, then g '.

1. Modules. Let $M_{i}(i \in I)$ be nonzero left R-modules.
(a) Show that if each M_{i} is injective, then so is $\prod_{i \in I} M_{i}$.
(b) Show that if $\prod_{i \in I} M_{i}$ is noetherian, then each M_{i} is noetherian and I is finite.
2. Matrix Rings.
(a) Show that for any positive integer n, a matrix belongs to the center of $\mathbb{M}_{n}(R)$ if and only if it is of the form $r I_{n}$, where r is in the center $Z(R)$ of R, and I_{n} is the identity matrix.
(b) Suppose that K_{1}, K_{2} are fields, and n_{1}, n_{2} are positive integers. Show that if $\mathbb{M}_{n_{1}}\left(K_{1}\right) \cong$ $\mathbb{M}_{n_{2}}\left(K_{2}\right)$, then $K_{1} \cong K_{2}$ and $n_{1}=n_{2}$.
(c) Give an example of rings R_{1}, R_{2} and positive integers n_{1}, n_{2} such that $R_{1} \not \approx R_{2}$ but $\mathbb{M}_{n_{1}}\left(R_{1}\right) \cong$ $\mathbb{M}_{n_{2}}\left(R_{2}\right)$.
3. Jacobson Radical.
(a) Show that for any rings $R_{i}(i \in I), \operatorname{rad}\left(\prod_{i \in I} R_{i}\right)=\prod_{i \in I} \operatorname{rad}\left(R_{i}\right)$.
(b) Explicitly describe all left artinian rings R with $\operatorname{rad}(R)=0$.
(c) The socle $\operatorname{soc}(M)$ of a left R-module M is defined to be sum of all simple submodules of M. Show that

$$
\operatorname{soc}(M) \subseteq\{m \in M \mid \operatorname{rad}(R) \cdot m=0\}
$$

with equality if $R / \operatorname{rad}(R)$ is a left artinian ring.
4. Functors and natural transformations.
(a) Let $e=e^{2}$ be an idempotent in R. Let M be any left R-module. For each exe $\in e R e$ and $\varphi \in \operatorname{Hom}_{R}(R e, M)$, define the element exe $* \varphi$ of $\operatorname{Hom}_{R}(R e, M)$ in such a way that $*$ makes $\operatorname{Hom}_{R}(\operatorname{Re}, M)$ into a left $e R e$-module. Show all the details.
(b) The assignment $F: R-\operatorname{Mod} \rightarrow e R e-\operatorname{Mod}$ given by setting $F(M)=\operatorname{Hom}_{R}(R e, M)$ for each left R-module M, and setting $F(\psi)=\psi_{*}$ for each $\psi \in \operatorname{Hom}_{R}(M, N)$, gives an additive covariant functor from $R-\operatorname{Mod}$ to $e R e-\operatorname{Mod}$.

The assignment $G: R-\operatorname{Mod} \rightarrow e R e-\operatorname{Mod}$ given by setting $G(M)=e R \otimes_{R} M$, and $G(\tau)=\iota_{e R} \otimes \tau$ for each $\tau \in \operatorname{Hom}_{R}(M, N)$, gives an additive covariant functor from $R-\operatorname{Mod}$ to $e R e-\operatorname{Mod}$. (Here $\iota_{R e}$ is the identity homomorphism from $R e$ to itself.)

Prove that F and G are naturally isomorphic functors. Show all the details.
5. Leavitt path algebras and related ideas.
(a) Let $\delta_{i, j}$ denote the Kronecker delta function as usual: $\delta_{i, j}=1$ if $i=j ; \delta_{i, j}=0$ if $i \neq j$. Prove that the following two statements are equivalent for any ring R.

1. There exist $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \in R$ for which $y_{i} x_{j}=\delta_{i, j} 1_{R}$ for all $1 \leq i, j \leq 3$, and $x_{1} y_{1}+$ $x_{2} y_{2}+x_{3} y_{3}=1_{R}$.
2. $R \cong R^{3}$ as left R-modules.

For the remainder of this question, let E denote the graph

(b) Compute 'directly' the monoid M_{E}. (First find a set of representatives of the equivalence classes in M_{E}, then prove that these equivalence classes are distinct.
(c) Using the theorem of Ara / Moreno / Pardo, we know that $M_{E} \cong \mathcal{V}\left(L_{K}(E)\right)$. Under this identification, which element of M_{E} corresponds to $\left[1_{L_{K}(E)}\right]$?
(d) Find the matrix $I-A_{E}^{t}$, and compute its Smith normal form. Show that your answer to part
(d) is consistent with your answer to part (b).
(e) True or False: $L_{K}(E) \cong L_{K}(1,4)$. Fully justify.
6. Equivalence of module categories. (All functors in this question are assumed to be additive and covariant.)
(a) If F is a category equivalence from $R-\operatorname{Mod}$ to $S-\operatorname{Mod}$ then F can be described "concretely" as a specific type of functor, involving a specific bimodule. Give this concrete description of F, and justify how this is achieved.
(b) The left R-module R has many module-theoretic properties. Which three specific moduletheoretic properties of R play the central role in any category equivalence between R - Mod and S - Mod for some ring S ?
(c) If $e=e^{2} \in R$ is any idempotent, then the left ideal $R e$ necessarily has two of the three properties you listed in 6(b). Give a necessary and sufficient ring-theoretic condition on e so that $R e$ has the third of the three module-theoretic properties you gave in the previous question.
(d) Referring to 6(c), denote the ring-theoretic property by \mathcal{T}, and denote the module-theoretic property by \mathcal{P}. Prove that for any idempotent $e \in R$, e has property \mathcal{T} if and only if $R e$ has property \mathcal{P}.
(e) Give a necessary and sufficient ring-theoretic condition relating two rings R and S, which is equivalent to the statement: the categories $R-\operatorname{Mod}$ and $S-\operatorname{Mod}$ are equivalent. (You need not prove this. To rephrase the question: give a ring-theoretic condition equivalent to the statement " R and S are Morita equivalent.")

