
PhD Comprehensive Exam – Real and Functional Analysis (August 2024)

Attempt ANY 5 of the following 6 problems. CROSS OUT any problem that you
do not want to be graded. Please write only on one side of the page and start each
problem on a new page.

Part I. Real Analysis

1. (a) Suppose S is the smallest σ–algebra on R containing {(r, k] : r ∈ Q, k ∈ Z}. Prove that
S is the collection of Borel subsets of R.

(b) Suppose S is a σ–algebra on a set X and A ⊆ X. Define

SA = {E ∈ S : A ⊆ E or A ∩ E = ∅} .

(i) Prove that SA is a σ–algebra.
(ii) Suppose that f : X → R is a function. Prove that f is measurable with respect to SA if
and only if f is measurable with respect to S and f is constant on A.

2. (a) Suppose (X,S, µ) is a measure space such that µ(X) < ∞ and suppose f : X → [0,∞)
is an S–measurable function.
(i) Suppose p, r are positive numbers with p < r. Prove that if

∫

f r dµ < ∞, then
∫

f p dµ < ∞.
(ii) Prove that lim

n→∞

∫

fn/(1 + fn) dµ exists and find the limit.

(b) Suppose f : R → R is a Borel measurable function with
∫

|f | dµ < ∞ for Lebesgue measure
λ, that is f ∈ L1(R). Use approximation in L1(R) to prove that lim

t→0

∫

|f(x+t)−f(x)| dλ(x) = 0.

3. (a) State the monotone convergence theorem.

(b) Recall that the Maclaurin series for − ln(1− x) is

− ln(1− x) = x+
x2

2
+

x3

3
+

x4

4
+ . . . .

Apply the monotone convergence theorem to the Maclaurin series for − ln(1− x) to show that

∫ 1

0

− ln(1− x) dx =
∞
∑

n=1

1

n(n+ 1)

and sum the series to find its value. Show all steps and explain where you are applying the
montone convergence theorem.

(c) Compute
∫

S

−
ln(1− xy)

xy
dµ

using the methods as in parts (a) & (b), where S = [0, 1]2 ⊂ R2 is the unit square and µ is the
planar Lebesgue measure on R2.

over



Part II. Functional Analysis

1. For a complex Hilbert space X define the unit ball to be BX := {x ∈ X : ‖x‖ ≤ 1}. Prove
directly that a complex Hilbert space X is finite dimensional if and only if BX is compact.
(Note: Here compact means with respect to the topology coming from the norm on X.)

2. (a) Let C[0, 2] be the space of real valued continuous functions on [0, 2] with norm

‖x‖ = max
0≤t≤2

|x(t)| .

Define the linear functional f : C[0, 2] → R by f(x) =
∫ 1

0
x(t) dt −

∫ 2

1
x(t) dt. Show that f is

bounded. Find the norm of f , and prove your answer.

(b) LetX be the space of real valued continuous functions on [0, 2] with norm ‖x‖ =
∫ 2

0
|x(t)| dt.

Show that X is not a Banach space.

(c) Let X be a Banach space and T : X → X a bounded linear operator on X. Assume
‖T‖ < 1. Denote by T k the k–th iterate of T : T 2x = T (Tx), T 3x = T (T 2x), . . . . Show that
∞
∑

k=0

T kx, converges for each x ∈ X.

3. Let λ be a Lebesgue measure on [0, 1]. Also let L2 := L2([0, 1], λ) denote the L2-space of
square integrable complex-valued function on [0, 1] with respect to the measure λ. Recall that
in L2 we identify functions that agree except on sets of measure zero, and L2 then consists of
(equivalence classes) of functions f : [0, 1] → C such that

∫

[0,1]
|f(x)|2 dλ(x) < ∞.

We make L2 into a Hilbert space with the inner product and the corresponding L2-norm
defined respectively, by

〈f, g〉 :=

∫

[0,1]

f(x)g(x) dλ(x) ‖f‖2 :=

(
∫

[0,1]

|f(x)|2 dλ(x)

)1/2

.

We also define C([0, 1]) := {f : [0, 1] → C : f is continuous} with the norm

‖f‖sup := max
0≤x≤1

|f(x)| .

For each f ∈ C([0, 1]) we define the multiplication operator Mf : L2 → L2 by Mf (g) := fg.

(a) Prove that if f ∈ C([0, 1]) and g ∈ L2, then fg ∈ L2 as claimed. Also prove that
Mf : L2 → L2 is linear.

(b) Prove that the multiplication operator Mf : L2 → L2 is bounded, and that ‖Mf‖ = ‖f‖sup.

(c) Prove that M∗
f = Mf , where M∗

f is the adjoint operator of Mf and f : [0, 1] → C is the

complex conjugate of f ; i.e., f(x) := f(x) for all x ∈ [0, 1].


