Comprehensive Exam - Analysis (January 2013)

There are 5 problems, each worth 20 points. Please write only on one side of the page and start each problem on a new page.

1. (a) Show that for any $t>0$ the series $p(x)=\sum_{n=1}^{\infty} e^{-n^{2} t} \cos (n x), x \in \mathbb{R}$ defines a continuous function.
(b) Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a real sequence such that $\lim _{n \rightarrow \infty} n a_{n}=t$ and $\sum_{n=1}^{\infty} n\left(a_{n}-a_{n-1}\right)=s$. Show that $\sum_{n=0}^{\infty} a_{n}=t-s$.
2. (a) Prove that a compact metric space is complete.
(b) Consider the metric space $X=C([0,1], \mathbb{R})$ of all real, continuous functions on $[0,1]$ with the uniform metric:

$$
d(f, g)=\sup _{x \in[0,1]}|f(x)-g(x)|
$$

Prove that $A=\{f \in X \mid f(0)=0\}$ is a closed subset of X.
3. (a) Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)=3 x^{5}-1$. Prove that there exists exactly one root $x \in(0,1)$ of the equation $f(x)=x$.
(b) Suppose $g:[a, b] \rightarrow \mathbb{R}$ is defined as follows: For $k=1,2,3, \ldots$ there is a sequence of distinct points c_{k} in $[a, b]$ such that $g\left(c_{k}\right)=1 / k$, while $g(x)=0$ for $x \notin\left\{c_{k}\right\}$. Show that g is Riemann integrable, and that $\int_{a}^{b} g(x) d x=0$.
4. (a) Let X, Y be metric spaces, and $f: X \rightarrow Y$ a continuous function. If X is compact then show that the image $f(X) \subseteq Y$ of f is also compact.
(b) Suppose f is a real valued, continuous function on a compact metric space X. Then use part (a) to show that $\exists p, q \in X$ such that $f(p) \leq f(x) \leq f(q), \forall x \in X$.
5. Let $f(u, v)$ be a function such that its first partial derivatives are continuous and satisfy $\left(\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right) \neq(0,0)$. Further, suppose that $z=z(x, y)$ is defined implicitly as

$$
f\left(\frac{x-x_{0}}{z-z_{0}}, \frac{y-y_{0}}{z-z_{0}}\right)=0, \quad z_{0}=z\left(x_{0}, y_{0}\right)
$$

(a) Show that

$$
z-z_{0}=\left(x-x_{0}\right) \frac{\partial z}{\partial x}+\left(y-y_{0}\right) \frac{\partial z}{\partial y} .
$$

(b) Use part (a) to show that

$$
\left(\frac{\partial^{2} z}{\partial x^{2}}\right)\left(\frac{\partial^{2} z}{\partial y^{2}}\right)=\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}
$$

Assume that all first and second partial derivaties of $z(x, y)$ exist and are continuous.

