Comprehensive Exam - Analysis (January 2010)
 Answer 4 out of 5 questions

1. Let (S, d) be a metric space.
(a) Give the definition of a Cauchy sequence $\left\{x_{n}\right\}$ in (S, d).
(b) Prove that every convergent sequence in (S, d) is a Cauchy sequence.
(c) Give an example of a metric space which has a Cauchy sequence that does not converge.
2. Let $f_{n}(x)=x^{n}\left(1-x^{n}\right), x \in[0,1]$.
(a) Show that $f_{n} \rightarrow 0$ point-wise, for all $x \in[0,1]$. Justify your answer.
(b) Find the maximum of $f_{n}(x)$ on $[0,1]$. (Hint: take $u=x^{n}$).
(c) Using your result of part (b) or otherwise, show that the sequence $\left\{f_{n}\right\}$ does not converge uniformly on $[0,1]$.
3. (a) Determine if each of the following series converge. Justify your answer.
(i) $\sum_{n=0}^{\infty} \sqrt{n+1}-\sqrt{n}$
(ii) $\sum_{n=1}^{\infty} \frac{\sin (1 / n)}{n^{2}}$
(iii) $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$.
(b) Find the interval of convergence and the sum of the power series $1+x+x^{2}+\cdots$.
(c) Use the result of part (a) to compute the sum $\sum_{n=1}^{\infty} n x^{n}$. State any theorems you need to use to justify your computation.
4. (a) Let $\left\{a_{n}(x)\right\}$ be a sequence of functions defined on an interval $I \subseteq \mathbb{R}$. Then state and prove the Weierstrass M-test for uniform convergence of the series $\sum_{n=0}^{\infty} a_{n}(x)$ on I.
(b) Using the Weierstrass M-test or otherwise, prove that the series $\sum_{n=0}^{\infty} \frac{\ln (n x)}{n^{2}}$ represents a continuous function on the interval $[1,4]$.
5. (a) Give an example of a sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ such that $f_{n} \rightarrow 0$ point-wise on $[0,1]$ but $\int_{0}^{1} f_{n} \nrightarrow 0$.
(b) Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ be a sequence of continuous functions such that $f_{n} \rightarrow f$ on $C([a, b], \mathbb{R})$. Then prove that $\int_{a}^{b} f_{n} \rightarrow \int_{a}^{b} f$.
