Comprehensive Exam – Analysis (January 2010) Answer 4 out of 5 questions

- 1. Let (S, d) be a metric space.
- (a) Give the definition of a Cauchy sequence $\{x_n\}$ in (S, d).
- (b) Prove that every convergent sequence in (S, d) is a Cauchy sequence.
- (c) Give an example of a metric space which has a Cauchy sequence that does not converge.
- 2. Let $f_n(x) = x^n(1-x^n), x \in [0, 1].$
- (a) Show that $f_n \to 0$ point-wise, for all $x \in [0, 1]$. Justify your answer.
- (b) Find the maximum of $f_n(x)$ on [0, 1]. (Hint: take $u = x^n$).

(c) Using your result of part (b) or otherwise, show that the sequence $\{f_n\}$ does *not* converge uniformly on [0, 1].

3. (a) Determine if each of the following series converge. Justify your answer.

(i)
$$\sum_{n=0}^{\infty} \sqrt{n+1} - \sqrt{n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{\sin(1/n)}{n^2}$ (iii) $\sum_{n=1}^{\infty} \frac{n^n}{n!}$.

(b) Find the interval of convergence and the sum of the power series $1 + x + x^2 + \cdots$.

(c) Use the result of part (a) to compute the sum $\sum_{n=1}^{\infty} nx^n$. State any theorems you need to use to justify your computation.

4. (a) Let $\{a_n(x)\}$ be a sequence of functions defined on an interval $I \subseteq \mathbb{R}$. Then state and prove the Weierstrass *M*-test for uniform convergence of the series $\sum_{n=0}^{\infty} a_n(x)$ on *I*.

(b) Using the Weierstrass *M*-test or otherwise, prove that the series $\sum_{n=0}^{\infty} \frac{\ln(nx)}{n^2}$ represents a continuous function on the interval [1, 4].

5. (a) Give an example of a sequence of functions $f_n : [0, 1] \to \mathbb{R}$ such that $f_n \to 0$ point-wise on [0, 1] but $\int_0^1 f_n \not\to 0$.

(b) Let $f_n : [a, b] \to \mathbb{R}$ be a sequence of continuous functions such that $f_n \to f$ on $C([a, b], \mathbb{R})$. Then prove that $\int_a^b f_n \to \int_a^b f$.