Comprehensive Exam in Analysis, January 2003

1. (a) State the Monotone Convergence Theorem for sequences of real numbers $\{a_n, n \geq 1\}$.

(b) Let
$$a_1 = \frac{1}{\sqrt{1}} \frac{1}{2}$$
, $a_2 = \frac{1}{\sqrt{1}} \frac{1}{2} + \frac{1}{\sqrt{2}} \frac{1}{2^2}$, $a_3 = \frac{1}{\sqrt{1}} \frac{1}{2} + \frac{1}{\sqrt{2}} \frac{1}{2^2} + \frac{1}{\sqrt{3}} \frac{1}{2^3}$, ...,

$$a_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} \frac{1}{2^k}$$

Prove that $\lim a_n$ exists.

- 2. Let $f : \mathbf{R} \to \mathbf{R}$ be continuous at x = 0 and assume f(0) = 2.
- (a) State the " ε , δ " definition of the continuity property.
- (b) Show there is some r > 0 such that $f(x) \ge 1$ for all $x \in (-r, r)$.

3. Let f(x) be monotone increasing on [0, 1], and denote by L(f, P) and U(f, P) the lower and upper sums of f with respect to a partition P. Let $\varepsilon > 0$. Show directly that there exists a partition P such that $U(f, P) - L(f, P) < \varepsilon$.

4. Show that the infinite series of functions

$$\sum_{n=1}^{\infty} \left(\frac{x^{2n}}{1+x^{2n}} \right) \frac{1}{n^2}$$

converges to a continuous function on **R**. What property of the convergence is being used to obtain the continuity of the infinite sum?

5. (a) State the Contraction Mapping theorem for a complete metric space X.

(b) Use the Mean Value theorem to show that if $f: \mathbf{R} \to \mathbf{R}$ has a derivative satisfying $|f'(x)| \le \lambda$ for all $x \in \mathbf{R}$ with some constant $\lambda < 1$, then f is a contraction on \mathbf{R} .

(c) Apply the Contraction Mapping theorem to establish that there is exactly one soultion to the equation

$$\sin(\frac{1}{2}\cos(x)) = x, \ x \in \mathbf{R}$$

6. Let X be a metric space with metric d. (a) Define what it means for a set A in X to be "open".

(b) Let $x_0 \in X$. Establish by this definition that the neighborhood $A := \{x \in X : d(x_0, x) < 1\}$ is indeed "open".

7. Let $f: \mathbb{R}^2 \to \mathbb{R}$ have continuous partial derivatives on \mathbb{R}^2 and let $g: \mathbb{R} \to \mathbb{R}$ be continuously differentiable on \mathbb{R} . Show that $g \circ f$ also has continuous partial derivatives on \mathbb{R}^2 .

8. Suppose that $\{x_n\}$ is a Cauchy sequence in a compact metric space K. Show directly from the definitions of "Cauchy sequence" and "compact set" that the sequence converges in K.