FIXED POINTS AND CYCLES OF PARKING FUNCTIONS

Parking functions are combinatorial objects that lie between permutations and mappings. A parking function of length n is a sequence $\pi=(\pi_1,\ldots,\pi_n)$ of positive integers such that if $\lambda_1 \leq \cdots \leq \lambda_n$ is the increasing rearrangement of π_1,\ldots,π_n , then $\lambda_i \leq i$ for $1 \leq i \leq n$. The index i is a fixed point of the parking function π if $\pi_i=i$. More generally, for $m\geq 1$, the indices (i_1,\ldots,i_m) where the i_j 's are all distinct constitute an m-cycle of the parking function π if $\pi_{i_1}=i_2,\pi_{i_2}=i_3,\ldots,\pi_{i_{m-1}}=i_m,\pi_{i_m}=i_1$.

1