
QUICK INTRODUCTION TO MATLAB
PART II

 
Department of Mathematics 

University of Colorado at Colorado Springs

MATLAB is a versatile programming language designed primarily for operating with
numerical data. In this second worksheet, you will learn the basics of generation, storage
and analysis of such data. You will also get acquainted with an essential tool in MATLAB
programming: script m-files and function m-files.
 

Basic Data Analysis
 
The following functions can be used to perform data anaylsis

       max, min  (maximum and minimum of a set of values)
       find  (find indices of nonzero elements)
       mean, median, std (find the average or mean, median and standard deviation)
       sort (sort in ascending order)
       sortrows (sort rows in ascending order)
       sum, prod, diff (sum, product and difference between elements)

 
MATLAB has a strong preference to work with columns rather than with rows. Most of the
functions work with columns when given matrix arguments. For example
a= rand(3) % generates a square matrix (3 by 3) of random number
between

         0 and 1  

 

a =

    0.2028    0.2722    0.7468

    0.1987    0.1988    0.4451

    0.6038    0.0153    0.9318  

 

m=max(a)  

 

m =

    0.6038    0.2722    0.9318  

 

max returns a vector containing the maximum value of each column. When given a vector,

max returns the maximum value

max(m)  

 

ans =    0.9318  

 

To find the index correspoding to the maximum value, supply two output arguments:

[v,ind]=max(m)  



 
v =    0.9318

ind =     3  

 

The first one is the maximum value and the second is the index of the maximum value. If
the maximum element is multiple, ind is the index of the first element. Here is another
example:
x=0:.01:2;
y=humps(x);
plot(x,y)
[v,ind] = max (y)
hold on
plot(x(ind),y(ind), 'rd')
x(ind), y(ind)  
 
  v =   96.5000

ind =   31

ans =    0.3000

ans =   96.5000

   

 
 

       Logical and relational operators
o       "=="  equal to

o       "~=" not equal to

o       "<", ">", "<=", ">+"  – the usual less than, greater than, less than or

equal to and greater than or equal to
o       "&"  AND

o       "|"  OR



o       "~" NOT

o       xor – Exclusive or

o       any  – True if any element is non-zero

o       all – True if all elements are non-zero

can be used in conjunction with the function "find". Here is an example
clf
ind = find(20<=y & y <=40);
plot(x,y,x(ind),y(ind),'d')

grid  

 

   

 

 

The "find" function can be used also with a matrix argument to locate and list the elements
that satisfy a logical test.
s= spiral(4)
s<8
find(s<8)' % the transpose "'" displays the column vector as a row

s(s<8)'  % list the elements of the matrix which are less than 8  

 

s =

     7     8     9    10

     6     1     2    11

     5     4     3    12

    16    15    14    13

ans =

     1     0     0     0

     1     1     1     0

     1     1     1     0



     0     0     0     0

ans =

     1     2     3     6     7    10    11

ans =

     7     6     5     1     4     2     3  

 

MATLAB has predefined mathematical functions such as
 

       sin, cos, tan, sec : trigonometric functions

       asin, acos, atan : inverse trigonometric functions

       sinh, cosh, tanh, sech : hyperbolic functions

       exp, log, log10 : exponential functions

 
Example:
 a1=cos(1+2*i) % MATLAB functions work for complex arguments,
a2=exp(2+3*i)
a3=sech(-2:1:2) %                   and for vector arguments,
a4=asin([0,1; -1, 0.5; -0.5,0])%   even for matrix arguments.
% In all cases, the output of MATLAB functions reproduces the input
structure.   

 
a1 =   2.0327 - 3.0519i

a2 =  -7.3151 + 1.0427i

a3 =    0.2658    0.6481    1.0000    0.6481    0.2658

a4 =         0    1.5708

   -1.5708    0.5236

      -0.5236         0  

 

Other useful functions are
 

       real, imag, conj : real, imaginary part and complex conjugate of a complex

number
       abs, angle : absolute value and phase angle of a complex number

 

 

M- Files
 
For simple tasts, you learned so far how to input MATLAB commands directly. For more
complex tasks though, it is more convenient to store the typed input into a file with
extension ".m" called an m-file. You can tell MATLAB to get its inputs from these files.
These are the script m-files. There are also m-files which accept input and produce outputs
and are called function m-files. Often they are reffered to as simply scripts and functions.
 

       script m-files
o       can include anything the user writes in the Command window.



o       a script m-file can be called inside other m-files. The variables are shared

between the parent and the children m-files.
o       echo on – all inputs appear on the screen while they are being executed

 
       function m-files

o       each function is saved as a separate m-file

o       a function m-file starts with the line

function [y1,y2,…,yN] = functionName(x1,x2,…,xM)
                        where

         x1,x2,…,xM are M input arguments
         y1,y2,…,yN are N output values
         functionName – same as the name of the m-file

 
As for new variables, when introducing new function m-files, make sure that the name does
not conflict with already defined functions. 
 
Using your text editor, create a file called mfile1.m containing the following lines:
x=0:.1:pi; y=0:.1:pi;
[X,Y]=meshgrid(x,y); % produce matrices X,Y such that each row of X is
a % copy of the vector x and each column of Y is a copy of the vector
y.
 
Z = sin(Y.^2+X)-cos(Y-X.^2);
subplot(121)
mesh(Z) % 
 
subplot(122)
meshc(x,y,Z) %

 

Now type in the MATLAB window.

 
mfile1

 

  

 



The following is an example of a user-defined function:
function f_avg = trapez(f,x)
 
% Computes the weighted average of the function f at N points x(1), …,
x(N), using the formula
%       f_avg=(f(x(1))+2 f(x(2))+…+2 f(x(N-1))+f(x(N)))/(2N-2)
% where the input x =[x(1),…,x(N)] is a vector of dimension N.
 
N=length(x);
fx=feval(f,x); 

f_avg=(2*sum(fx)-fx(1)-fx(end))/(2*N-2)
 

The name of the m-file must coincide with the name of the function on the first line, in the 
present case it must be entitled trapez.m . Have you encountered such weighted averages
before? They are useful in the numerical integration of functions, e.g. the trapezoidal rule.
The comment lines which follow the definition line in a function m-file can be dispayed in 
the MATLAB window simply by typing help trapez at the command prompt.

 
The function 'trapez' can be called in a different script or simply at the command prompt,
e.g.
 
x=0:.1:pi;
trapez('sin',x)  

 
f_avg =

    0.6443

ans =

    0.6443  

 
 

Reading and Writing Operations
 

There are several ways to communicate data with Matlab. The simplest one is
 

       input : takes the input data from the user.
 
input('Do you want to continue (y or n)?','s') % 's' indicates Matlab to expects a string
response  
 

Do you want to continue (y or n)?  

 
or
 
r=input('Enter the initial value:') % Matlab expects a numerical response  

 
Enter the initial value: 4



r =   4

 
       The conversion between numerical inpout and string input can be done using the

functions str2num and num2str:
 
b1=7328 % this is a number 
b2='7328'  % this is a string
b3 = str2num(b2)
b4=num2str(b3) 
length(b1) % b1 is a scalar, hence of length one
length(b2) % b2 is am array of four charachers
(b1==b3) % compare the two variables
(b2==b4) % compare the two arrays, on components (must be of same

size!)  

 

b1 =      7328

b2 = 7328

b3 =      7328

b4 =  7328

ans = 1

ans = 4

ans = 1

ans = 1     1     1     1  

 

       disp is used to display variable on the screen as below:

 

disp([' The value of pi with 6 decimals is ' num2str(pi,6)] )  

 

 The value of pi with 6 decimals is 3.14159  

 
 

       fprintf and sprintf  are used for more sophisticated formatting such as
 
fprintf('%6.4f\n', pi) % the character "%" requests a field of width 6

  with 4 decimals. "\n" indicates new line  

 
3.1416  

 

The standard formats (same as in C language) for data output are
 
"%10.2f" – fixed point format
"%10.2e" –floating point format
"%10.2g" – the shortest of fixed or floating point format
"%10.0f" – fixed point format for a rounded integer part of a number
"%d" - dipspalys an integer
"%s" - displays a string



 
More examples:
 

fprintf(' %g \n %e', exp(1), -exp(1))  

 

 2.71828 

 -2.718282e+000  

 

Other special characters:
       "\n" indicates a new line.
       "\t" tab character
       "\r" carriage return character
       "\\" backslash character
       "%%" percent character

 
 

Data File Input and Output
 
To save all the variables from the worskspace onto disk you should use the command 
save.

 
save datafile % saves the variables to a disk file called datafile.mat

 

 
To load certain variables, specify them after the filename. For example
 

load datafile x % loads the variable called x from datafile.mat  

 
Alternative syntax is save('datafile') and load('datafile','x').
 
To load a list or table of numbers in ASCII format, stored say in a file data1.dat, one simply
type the command load data1.dat. This would load the data into a variable called data1. If
the ASCII file contains a table, the variable would be a matrix of the same size as the table.
 

       fopen, fclose are commands for file opening and closing
 
fid=fopen('filename','w') % open the file "filename" for writing
                         operations  

fid is an integer, called a file identifier (uniquely identifies the file in a given workspace)
 
The options are:
'r' – read
'w' –write (create if necessary)
'a' - append (create if necessary)
'r+' - read and write (do not create)
'w+' - truncate or create for read and write



'a+' – read and append (create if necessary)
 

fclose(fid)  % close the file with the file identifier 'fid'  

fprintf(fid,'textname') % write the text "textname" into the file with
                     the file identifier "fid"  

fwrite(fid, variablename) % write the variable "variablename" into the
file with file identifier "fid"

 
Other I/O commands: fscanf, fread, fgets, fget.
Follow the example below.
 
A = [ 0, 23, 45, 100];
fid=fopen('temp', 'w');
fprintf(fid, '%3.0f degrees Celsius = %3.0f degrees Fahrenheit\n', [A;
9*A/5+32]);

fclose(fid);  

 
This creates a file "temp.dat" containing 
 
    0 degrees Celsius =   32 degrees Fahrenheit
  23 degrees Celsius =   73 degrees Fahrenheit
  45 degrees Celsius = 113 degrees Fahrenheit
100 degrees Celsius = 212 degrees Fahrenheit
 
To read this file, use the following
 
fid=fopen('temp','r');
X=fscanf(fid,'%f degrees Celsius = %f degrees Fahrenheit')
fclose(fid);
 

X =

     0

    32

    23

    73

    45

   113

   100

   212  

Finally, we can convert the vector output X to the original matrix format

X=reshape(X,2,4)'  

 

X =

     0    32

    23    73

    45   113



   100   212  

 
When working with different directories in MATLAB, the following commands can be useful:
 

       cd  - Change to another directory

       pwd - Dispray current working directory

       dir - Display contents of current working directory

       what - Display MATLAB-relevant files in current directory

       which – Display directory containing specific function

       type – Display file in MATLAB window

       path - Display or change the search path

       addpath – Add directory to the search path

       rmpath – Remove directory from the search path


